Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Rapid Commun Mass Spectrom ; 38(11): e9733, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38591181

ABSTRACT

RATIONALE: Sulfur isotopes have been widely used to solve some key scientific questions, especially in the last two decades with advanced instruments and analytical schemes. Different sulfur speciation and multiple isotopes analyzed in laboratories worldwide and in situ microanalysis have also been reported in many articles. However, methods of sampling to measurements are multifarious, and occasionally some inaccuracies are present in published papers. Vague methods may mislead newcomers to the field, puzzle readers, or lead to incorrect data-based correlations. METHODS: We have reviewed multiple methods on sulfur isotopic analyses from the perspectives of sampling, laboratory work, and instrumental analysis in order to help reduce operational inhomogeneity and ensure the fidelity of sulfur isotopic data. We do not deem our proposed solutions as the ultimate standard methods but as a lead-in to the overall introduction and summary of the current methods used. RESULTS: It has been shown that external contamination and transformation of different sulfur species should be avoided during the sampling, pretreatment, storage, and chemical treatment processes. Conversion rates and sulfur isotopic fractionations during sulfur extraction, purification, and conversion processes must be verified by researchers using standard or known samples. The unification of absence of isotopic fractionation is needed during all steps, and long-term monitoring of standard samples is recommended. CONCLUSION: This review compiles more details on different methods in sampling, laboratory operation, and measurement of sulfur isotopes, which is beneficial for researchers' better practice in laboratories. Microanalyses and molecular studies are the frontier techniques that compare the bulk sample with the elemental analysis/continuous flow-gas source stable isotope ratio mass spectrometry method, but the latter is widely used. The development of sulfur isotopic measurements will lead to the innovation in scientific issues with sulfur proxies.

2.
Water Res ; 244: 120382, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37660467

ABSTRACT

Excessive phosphorus (P) loadings cause major pollution concerns in large catchments. Quantifying the point and nonpoint P sources of large catchments is essential for catchment P management. Although phosphate oxygen isotopes (δ18O(PO4)) can reveal P sources and P cycling in catchments, quantifying multiple P sources in a whole catchment should be a research focus. Therefore, this study aimed to quantitatively identify the proportions of multiple potential end members in a typical large catchment (the Yangtze River Catchment) by combining the phosphate oxygen isotopes, land use type, mixed end-element model, and a Bayesian model. The δ18O(PO4) values of river water varied spatially from 4.9‰ to18.3‰ in the wet season and 6.0‰ to 20.9‰ in the dry season. Minor seasonal differences but obvious spatial changes in δ18O(PO4) values could illustrate how human activity changed the functioning of the system. The results of isotopic mass balance and the Bayesian model confirmed that controlling agricultural P from fertilizers was the key to achieving P emission reduction goals by reducing P inputs. Additionally, the effective rural domestic sewage treatment, development of composting technology, and resource utilization of phosphogypsum waste could also contribute to catchment P control. P sources in catchment ecosystems can be assessed by coupling an isotope approach and multiple-models.


Subject(s)
Ecosystem , Phosphates , Humans , Oxygen Isotopes , Bayes Theorem , Agriculture
3.
Sci Total Environ ; 892: 164713, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37302593

ABSTRACT

Long-term series data can provide a glimpse of the influence of natural and anthropogenic factors on water chemistry. However, few studies have been conducted to analyze the driving forces of the chemistry of large rivers based on long-term data. This study aimed to analyze the variations and driving mechanisms of riverine chemistry from 1999 to 2019. We compiled published data on major ions in the Yangtze River, one of the three largest rivers in the world. The results showed that Na+ and Cl- concentrations decreased with increasing discharge. Significant differences in riverine chemistry were found between the upper and middle-lower reaches. Major ion concentrations in the upper reaches were mainly controlled by evaporites, especially Na+ and Cl- ions. In contrast, major ion concentrations in the middle-lower reaches were mainly affected by silicate and carbonate weathering. Furthermore, human activities were the drivers of some major ions, notably SO42- ions associated with coal emissions. The increased major ions and total dissolved solids in the Yangtze River in the last 20 years were ascribed to the continuous acidification of the river and the construction of the Three Gorges Dam. Attention should be given to the impact of anthropogenic activities on the water quality of the Yangtze River.


Subject(s)
Environmental Monitoring , Rivers , Humans , Environmental Monitoring/methods , Water Quality , Carbonates/analysis , Weather , China
4.
RSC Adv ; 13(21): 14060-14064, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179997

ABSTRACT

Carbon anions formed via the addition of Grignard reagents to SP-vinyl phosphinates were modified with electrophilic reagents to afford organophosphorus compounds with diverse carbon skeletons. The electrophiles included acids, aldehydes, epoxy groups, chalcogens and alkyl halides. When alkyl halides were used, bis-alkylated products were afforded. Substitution reactions or polymerization occurred when the reaction was applied to vinyl phosphine oxides.

5.
J Org Chem ; 88(5): 2898-2907, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36802599

ABSTRACT

An efficient triflic anhydride promoted phosphorylation of ketone was disclosed, and vinylphosphorus compounds were prepared under solvent- and metal-free conditions. Both aryl and alkyl ketones could perform smoothly to give vinyl phosphonates in high to excellent yields. In addition, the reaction was easy to carry out and easy to scale up. Mechanistic studies suggested that this transformation might involve nucleophilic vinylic substitution or a nucleophilic addition-elimination mechanism.

6.
RSC Adv ; 12(29): 18441-18444, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35799919

ABSTRACT

Direct phosphorylation of benzylic C-H bonds was achieved in a biphasic system under transition metal-free conditions. A selective radical/radical sp3C-H/P(O)-H cross coupling was proposed, and various substituted toluenes were applicable. The transformation provided a promising method for constructing sp3C-P bonds.

7.
Org Biomol Chem ; 20(13): 2615-2620, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35297934

ABSTRACT

The P-O bond of epimerized alkoxyl phosphine-borane was cleaved by naphthalene-lithium, to form two diastereomers of P-anions in a ratio of 86 : 14, which was then converted to secondary phosphine-borane via acidification, and to tertiary phosphines with alkyl halides with enhanced 96 : 4 dr. The isolated tertiary phosphine containing hydroxyl (in >99 : 1 dr) was converted to multi-stereogenic tertiary phosphines via O-alkylation with alkylene dihalides.


Subject(s)
Boranes , Phosphines , Anions , Boranes/chemistry , Lithium/chemistry , Phosphines/chemistry
8.
Sci Total Environ ; 814: 152653, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34954188

ABSTRACT

Soil heavy metals harm ecological biodiversity and human health, and quantifying the risks more accurately is still obscure. In this study, a network environ analysis was applied to quantify risks between ecological communities based on control allocation and human health risk models to calculate human health exposure risks from soil heavy metals around Greenside coal mining in South Africa. Ecological and human health risks were apportioned using PMF model. Results showed assessed heavy metals (mean) exceeded local background content with a cumulative of moderately polluted using pollution load index (PLI). Total initial risk (Ri), the risk to biological organisms from direct soil exposure, was 0.656 to vegetation and 1.093 to soil microorganisms. Risk enters the food web via vegetation and harms the whole system. Integrated risks (initial, direct, and indirect) to vegetation, herbivores, soil microorganisms, and carnivores were 0.656, 0.125, 1.750, and 0.081, respectively, revealing that soil microorganisms are the most risk receptors. Total Hazard Index (HIT) was <1 for adults (0.574) whereas >1 for children (4.690), signifying severe non-cancer effects to children. Total cancer risk (TCR) to children and adults surpassed the unacceptable limit (1.00E-04). Comparatively, Cr is a high-risk metal accounted for 63.24% (adults) and 65.88% (children) of the HIT and 92.98% (adults) and 91.31% (children) of the TCR. Four sources were apportioned. Contributions to Ri (soil microorganisms and vegetation) from F3 (industrial), F4 (atmospheric), F2 (coal mining), and F1 (natural) were 42.20%, 24.56%, 23.55%, and 9.68%, respectively. The non-cancer risk from F3 (37.67% to adults and 38.40% to children) was dominant, and TCR to children from the sources except F1 surpassed the unacceptable limit. An integrated approach of risk quantification is helpful in managing risks and reducing high-risk pollution sources to better protect the environment and human health.


Subject(s)
Coal Mining , Metals, Heavy , Soil Pollutants , Adult , Child , China , Environmental Monitoring , Humans , Metals, Heavy/analysis , Mining , Risk Assessment , Soil , Soil Pollutants/analysis
9.
RSC Adv ; 11(40): 24991-24994, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35481042

ABSTRACT

An addition of H-phosphonates to aryl alkynes was realized under solvent- and metal-free conditions, affording Markovnikov-selective α-vinylphosphonates in moderate to good yields. A wide range of aryl alkynes could be applied for the reaction. A tentative mechanism of addition-substitution was proposed based on in situ 31P {1H} NMR studies.

10.
Org Lett ; 22(20): 7947-7951, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-32996768

ABSTRACT

Phosphine ligands with up to six chiral sites were prepared, starting from 2-phenylphenol, via O- and P-alkylation, cyclization, and coupling. The chirality was transferred from (L)-menthyl to phosphorus, α-carbon, and axis, to achieve excellent diastereoselectivities. During an intramolecular SNAr reaction with alkoxyl as the leaving groups, the C-O bond was converted to a C-C bond. Both phosphine boranes and oxides could be used for the conversions, affording a series of cyclic phosphines.

11.
Org Biomol Chem ; 18(16): 3017-3021, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32236276

ABSTRACT

P,C-Stereogenic propargyl alcohols RC-3/SC-3' were prepared by the addition of (L)-menthyl-derived SPOs to propynals, which were converted to P,axial-stereogenic allenyl bisphosphine oxides. The chirality transfer was controlled by α-carbon via syn [2,3]-sigmatropic rearrangement. For SC-3' linking weak WDG on the alkynyl moiety, the chirality on the axis depended on stereogenic phosphorus.

12.
J Org Chem ; 84(13): 8423-8439, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31136177

ABSTRACT

Various functional secondary and tertiary phosphines, or their derivatives, containing stationary chiral phosphorus and flexible chiral axis were prepared, which could be further modified to afford diversely chelating ligands. The flexible axial chirality was fixed by stereogenic phosphorus via a cyclic linkage of chemical bonds or coordination with a metallic ion.

13.
Org Lett ; 20(11): 3332-3336, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29771129

ABSTRACT

A series of bibenzo[ b][1,4]thiazines with various functional groups has been synthesized by a free-radical condensation reaction. Bibenzo[ b][1,4]thiazines were obtained in moderate to good yield (up to 85%) through a one-step reaction of readily available 2,2'-dithiodianiline and methyl aryl ketones with AIBN as radical initiator in HOAc. Bibenzo[ b][1,4]thiazines exhibit diversiform solid-state packing.

14.
J Am Chem Soc ; 140(8): 3139-3155, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29420024

ABSTRACT

We carried out a comprehensive study on the generality, scope, limitations, and mechanism of the palladium-catalyzed hydrophosphorylation of alkynes with P(O)-H compounds (i.e., H-phosphonates, H-phosphinates, secondary phosphine oxides, and hypophosphinic acid). For H-phosphonates, Pd/dppp was the best catalyst. Both aromatic and aliphatic alkynes, with a variety of functional groups, were applicable to produce the Markovnikov adducts in high yields with high regioselectivity. Aromatic alkynes showed higher reactivity than aliphatic alkynes. Terminal alkynes reacted faster than internal alkynes. Sterically crowded H-phosphonates disfavored the addition. For H-phosphinates and secondary phosphine oxides, Pd/dppe/Ph2P(O)OH was the catalyst of choice, which led to highly regioselective formation of the Markovnikov adducts. By using Pd(PPh3)4 as the catalyst, hypophosphinic acid added to terminal alkynes to give the corresponding Markovnikov adducts. Phosphinic acids, phosphonic acid, and its monoester were not applicable to this palladium-catalyzed hydrophosphorylation. Mechanistic studies showed that, with a terminal alkyne, (RO)2P(O)H reacted, like a Brønsted acid, to selectively generate the α-alkenylpalladium intermediate via hydropalladation. On the other hand, Ph(RO)P(O)H and Ph2P(O)H gave a mixture of α- and ß-alkenylpalladium complexes. In the presence of Ph2P(O)OH, hydropalladation with this acid took place first to selectively generate the α-alkenylpalladium intermediate. A subsequent ligand exchange with a P(O)H compound gave the phosphorylpalladium intermediate which produced the Markovnikov adduct via reductive elimination. Related intermediates in the catalytic cycle were isolated and characterized.

15.
Org Lett ; 20(2): 477-480, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29313691

ABSTRACT

A novel metal-free one-pot protocol for the effective and efficient synthesis of 3-phosphinoylbenzofurans via a phospha-Michael addition/cyclization of H-phosphine oxides and in situ generated ortho-quinone methides is described. Based on the expeditious construction of C(sp2)-P bonds, asymmetric synthesis of optically pure 3-phosphinoylbenzofurans containing chiral P-stereogenic center has also been probed by using chiral RP-(-)-menthyl phenylphosphine oxide.

16.
J Org Chem ; 82(23): 11990-12002, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29045783

ABSTRACT

Nucleophilic substitutions at P centers are of high importance in biological processes and asymmetric synthesis. However, detailed studies on this topic are rare. P-Stereogenic compounds containing P-Cl, P-O, and P-S bonds were diastereoselectively prepared and then used to study the substitution of Cl, O, and S at phosphorus centers with organometallic reagents. It was proposed that with alkynyl metallic reagents an SN2-like mechanism (route A1) and a Berry pseudorotation (BPR) of pentacoordinated phosphorus intermediates (route B1) were involved and afforded P-inverted and P-retained products, respectively. The P-inverted conversion of a P-Cl functionality to a P-C functionality can be controlled by either the temperature or the order of addition of the starting materials. The introduction of a P-Cl bond using an alkyl metallic reagent proceeded through routes A2 and A2'. At higher temperatures, P-inverted products were predominantly afforded via SN2-like route A2. At lower temperatures, bis-substituted products were formed via route A2' and cleavage of the P-O bond. The P-S bonds were accompanied by the epimerization of the starting materials, triggered by the alkylthio anion, via route C. The epimerization can be suppressed by the use of a poorly soluble magnesium alkylthiolate, and the P-retained compounds will be formed as the major products via route B3 and BPR of the intermediates.

17.
Org Lett ; 19(19): 5384-5387, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28949150

ABSTRACT

A diastereomeric mixture of secondary phosphine oxide is stereospecifically converted to chlorophosphine salt by treatment with oxalyl chloride, which stereoselectively affords P-inverted or retained tertiary phosphines, depending on the substitution with aliphatic or aromatic Grignard reagents, respectively, in high to 99% yield and 99:1 dr. The repulsion of π-electron on aryl to lone electron pair on phosphorus is proposed for the P-retained substitution.

18.
J Org Chem ; 82(18): 9425-9434, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28813606

ABSTRACT

The secondary RP-(-)-menthyl alkylphosphine oxide was confirmed as configurationally stable toward base and was used in base-promoted alkylation, stereospecifically affording P-retained bis or functional tertiary phosphine oxides in excellent yields. The alkylated products were deoxygenated using oxalyl chloride followed by ZnCl2-NaBH4 to form P-inversed bidentate phosphine boranes in high stereoselectivities.

20.
J Org Chem ; 81(15): 6843-7, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27409247

ABSTRACT

P-Stereogenic phosphonothioates and phosphonoselenoates were readily prepared utilizing RP-menthyl phenylphosphite 1 by two methods. The first method used elemental sulfur or selenium to react with 1, followed by alkylation of the intermediates with alkyl halides. The second used 1 to react with disulfide or diselenide. Both methods stereospecifically produced the title compounds in nearly quantitative yields under mild conditions. Stereospecific chalcogenation of the phosphoryl was proposed as the key step in these reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...