Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(8): 11727-11734, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224435

ABSTRACT

Bromate is receiving increased attention as a typical disinfection by-product in aquatic environments, but bromate toxicity tests on invertebrate such as Brachionus calyciflorus rotifer are inadequate. In the present study, the long-term toxicity tests on B. calyciflorus were performed during 21 days under the exposure of different bromate concentrations and two algal density conditions. Furthermore, we evaluated the feeding behaviors of the rotifers under the impact of bromate. The maximum population density of rotifers was significantly reduced at 100 and 200 mg/L bromate exposure at the two algal density conditions. However, we observed that the maximum population density and population growth rate of rotifers were higher at 3.0 × 106 cells/mL algal density than those at 1.0 × 106 cells/mL under the same conditions of bromate exposure. These results suggest that higher food density may have alleviated the negative effects of bromate on rotifers. Meanwhile, the ingestion rate at an algal density of 3.0 × 106 cells/mL was higher than that at 1.0 × 106 cells/mL. The present study provides a basic reference to comprehensively evaluate the toxic effects of bromate on aquatic organisms.


Subject(s)
Rotifera , Water Pollutants, Chemical , Animals , Bromates/toxicity , Food , Eating , Population Growth , Water Pollutants, Chemical/toxicity
2.
Environ Res ; 245: 117797, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38052357

ABSTRACT

Problems associated with the colonization and leakage of invertebrates in the granular activated carbon (GAC) filters of waterworks have received increased attention in recent years. To study the effect of environmental factors and water quality on invertebrate abundances, and the backwash control for minimizing invertebrate abundance. A survey of the invertebrate community of GAC filters was carried out monthly from March 2021 to May 2022. A pilot-scale GAC system established in the laboratory alongside a lake, with a volume of 35.3 L. 45 invertebrate species were detected, and 40 of these were rotifers. Significant variation in abundance was observed among seasons before and after GAC filtration, the average invertebrate abundance in the inlet water was 11.1 times that in the filtrate. The GAC filter contained invertebrates that might be responsible for the large number of organisms in the filtrate. Invertebrate abundance in the GAC filter decreased gradually with the carbon layer depth, which the mean invertebrate abundances were 6,926, 5,232, and 3818 ind./kg in the top layer (TL), middle layer (ML), and bottom layer (BL), respectively. Invertebrate abundance was correlated with water temperature and varied seasonally. Among eight water quality parameters, chlorophyll a (Chla) and the total plate count (TPC) were most significantly correlated with invertebrate abundance. According to the statistical modeling and the optimization process of response surface methodology (RSM). The predicted optimal values were a flow rate of 6.36 L/h, a backwash cycle of 3.26 d, and a backwash intensity of 14.97 L/(m2·s) for a minimum invertebrate abundance of 3013 ind./kg in the GAC filter. To maintain invertebrate abundance within an acceptable range, some of these measures might need to be modified depending on the actual conditions.


Subject(s)
Charcoal , Water Purification , Animals , Seasons , Chlorophyll A , Water Purification/methods , Invertebrates , Filtration/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...