Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.190
Filter
1.
Front Cardiovasc Med ; 11: 1387421, 2024.
Article in English | MEDLINE | ID: mdl-38966753

ABSTRACT

Background: Digital Subtraction Angiography (DSA) is currently the most effective diagnostic method for vascular diseases, but it is still subject to various factors, resulting in uncertain diagnosis. Therefore, a new technology is needed to help clinical doctors improve diagnostic accuracy and efficiency. Purpose: The objective of the study was to investigate the effect of utilizing color-coded parametric imaging techniques on the accuracy of identifying active bleeding through DSA, the widely accepted standard for diagnosing vascular disorders. Methods: Several variables can delay the diagnosis and treatment of active bleeding with DSA. To resolve this, we carried out an in vitro simulation experiment to simulate vascular hemorrhage and utilized five color-coded parameters (area under curve, time to peak, time-of-arrival, transit time, and flow rate of contrast agent) to determine the optimal color coding parameters. We then verified it in a clinical study. Results: Five different color-coded parametric imaging methods were compared and the time-of-arrival color coding was the most efficient technique for diagnosing active hemorrhage, with a statistically significant advantage (P < 0.001). In clinical study, 135 patients (101 with confirmed bleeding and 34 with confirmed no bleeding) were collected. For patients whose bleeding could not be determined using DSA alone (55/101) and whose no bleeding could not be diagnosed by DSA alone (35/55), the combination of time-of-arrival color parametric imaging was helpful for diagnosis, with a statistically significant difference (P < 0.01 and P = 0.01). Conclusions: The time-of-arrival color coding imaging method is a valuable tool for detecting active bleeding. When combined with DSA, it improves the visual representation of active hemorrhage and improves the efficiency of diagnosis.

2.
Res Vet Sci ; 176: 105349, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968647

ABSTRACT

Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of the acute infectious disease hepatitis-hydropericardium syndrome (HHS). Previous studies have focused on the mechanisms of FAdV-4 caused liver injury, while studies revealing potential mechanisms of inflammatory injury in FAdV-4-infected chicken cardiac cells remain scare. Here we found that FAdV-4 successfully infected chicken embryonic cardiac fibroblasts (CECF) cells in vitro and significantly upregulated production of inflammatory cytokines including IL-1ß, IL-6, IL-8, and TNF-α, suggesting induction of a strong inflammatory response. Mechanistically, FAdV-4 infection increased expression of phosphorylated Akt in a time-dependent manner, while phosphorylation of Akt and production of pro-inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α were greatly reduced in FAdV-4-infected CECF cells after treatment with LY294002, a potent inhibitor of PI3K, indicating that the inflammatory response induced by FAdV-4 infection is mediated by the PI3K/Akt signaling pathway. Furthermore, FAdV-4 infection increased expression of phosphorylated IκBα, a recognized indicator of NF-κB activation, and treatment with the BAY11-7082, a selective IκBα phosphorylation and NF-κB inhibitor, significantly reduced IκBα phosphorylation and inflammatory cytokines (IL-1ß, IL-6, IL-8, and TNF-α) production in FAdV-4-infected CECF cells, suggesting a critical role of IκBα/NF-κB signaling in FAdV-4-induced inflammatory responses in CECF cells. Taken together, our results suggest that FAdV-4 infection induces inflammatory responses through activation of PI3K/Akt and IκBα/NF-κB signaling pathways in CECF cells. These results reveal potential mechanisms of inflammatory damage in chicken cardiac cells caused by FAdV-4 infection, which sheds new insight into clarification of the pathogenic mechanism of FAdV-4 infection and development of new strategies for HHS prevention and control.

3.
Nanomicro Lett ; 16(1): 233, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954272

ABSTRACT

The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.

4.
J Control Release ; 371: 324-337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823584

ABSTRACT

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.


Subject(s)
Capsaicin , Nerve Block , Prodrugs , Rats, Sprague-Dawley , Sciatic Nerve , Prodrugs/administration & dosage , Animals , Capsaicin/administration & dosage , Capsaicin/analogs & derivatives , Male , Sciatic Nerve/drug effects , Nerve Block/methods , Rats , Analgesics/administration & dosage , Analgesics/pharmacology
5.
Nat Neurosci ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849524

ABSTRACT

In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin. These ectopic oligodendrocytes (eOLs) have a distinctive gene expression profile as well as subtle myelination abnormalities. The failure of eOLs to fully assume the role of the original dorsally derived cells results in locomotor and cognitive deficits in the adult animal. This study reveals the importance of developmental heterogeneity within the oligodendrocyte lineage and its importance for homeostatic brain function.

6.
Cancers (Basel) ; 16(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893229

ABSTRACT

BACKGROUND: Both cervical cancer and cervical intraepithelial neoplasia (CIN) are associated with human papillomavirus (HPV) infection at different anogenital sites, but the infection features of high-risk (HR) HPVs at these sites and their association with cervical lesions have not been well characterized. Given the limitation of cervical HPV 16/18 test in screening patients with high-grade CIN (CIN 2+), studies on whether non-16/18 HR-HPV subtype(s) have potential as additional indicator(s) to improve CIN 2+ screening are needed. METHODS: The infection of 15 HR-HPVs in vulva, anus, vagina, and cervix of 499 Chinese women was analyzed, and CIN lesion-associated HR-HPV subtypes were revealed. RESULTS: In addition to the well-known cervical-cancer-associated HPV 16, 52, and 58, HPV 51, 53, and 56 were also identified as high-frequency detected subtypes prevalently and consistently present at the anogenital sites studied, preferentially in multi-infection patterns. HPV 16, 52, 58, 56, and 53 were the top five prevalent subtypes in patients with CIN 2+. In addition, we found that cervical HPV 33/35/52/53/56/58 co-testing with HPV 16/18 might improve CIN 2+ screening performance. CONCLUSION: This study provided a new insight into HR-HPV screening strategy based on different subtype combinations, which might be used in risk stratification clinically.

7.
Food Chem X ; 22: 101494, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38846800

ABSTRACT

This study aimed to explore the use of Ulva lactuca polysaccharide (ULP) as a preservative for perch (Lateolabrax maculatus) fillets stored under refrigeration at 4 °C. Fresh perch fillets were treated with ULP (7-10 kDa) and potassium sorbate, respectively, to evaluate their effectiveness in inhibiting bacterial growth and maintain freshness. A 0.5% ULP solution significantly decreased the pH value, total volatile basic nitrogen value, thiobarbituric acid value, and total bacterial count of perch fillets. ULP solution delayed the changes in whiteness and texture of fillets, as well as protein degradation. The acute toxicity experiment further evaluates the safety and reliability of ULP. Simultaneously, utilizing 16S rRNA techniques, the ULP solution inhibited microorganisms known for their strong spoilage capabilities, such as Pseudomonas, Actinetobacter, and Shewanella. Microorganisms with a weaker ability to cause corruption became the dominant bacteria, such as Acetobacter, Lactobacillus, and Faecalibacterium, thereby exerting a degree of inhibition against spoilage.

8.
Int J Biol Macromol ; 274(Pt 1): 133279, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906356

ABSTRACT

Resistant starch (RS) can potentially prevent type 2 diabetes through the modulation of intestinal microbiota and microbial metabolites. Currently, it has been wildly noted that altering the intestinal microbial composition and short-chain fatty acids levels can achieve therapeutic effects, although the specific mechanisms were rarely elucidated. This review systematically explores the structural characteristics of different RS, analyzes the cross-feeding mechanism utilized by intestinal microbiota, and outlines the pathways and targets of butyrate, a primary microbial metabolite, for treating diabetes. Different RS types may have a unique impact on microbiota composition and their cross-feeding, thus exploring regulatory mechanisms of RS on diabetes through intestinal flora interaction and their metabolites could pave the way for more effective treatment outcomes for host health. Furthermore, by understanding the mechanisms of strain-level cross-feeding and metabolites of RS, precise dietary supplementation methods targeted at intestinal composition and metabolites can be achieved to improve T2DM.

9.
Pharmacol Res ; 205: 107257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866264

ABSTRACT

Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Oligosaccharides , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Aging/metabolism , Aging/drug effects , Cellular Senescence/drug effects , Rats, Sprague-Dawley , Rats , Humans , Gastrointestinal Microbiome/drug effects
10.
Fish Shellfish Immunol ; 151: 109670, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838838

ABSTRACT

MicroRNAs (miRNAs) play a fundamental role in the post-transcriptional regulation of genes and are pivotal in modulating immune responses in marine species, particularly during pathogen assaults. This study focused on the function of miR-7562 and its regulatory effects on autophagy against Vibrio harveyi infection in the black tiger shrimp (Penaeus monodon), an economically important aquatic species. We successfully cloned and characterized two essential autophagy-related genes (ATGs) from P. monodon, PmATG5 and PmATG12, and then identified the miRNAs potentially involved in co-regulating these genes, which were notably miR-7562, miR-8485, and miR-278. Subsequent bacterial challenge experiments and dual-luciferase reporter assays identified miR-7562 as the principal regulator of both genes, particularly by targeting the 3'UTR of each gene. By manipulating the in vivo levels of miR-7562 using mimics and antagomirs, we found significant differences in the expression of PmATG5 and PmATG12, which corresponded to alterations in autophagic activity. Notably, miR-7562 overexpression resulted in the downregulation of PmATG5 and PmATG12, leading to a subdued autophagic response. Conversely, miR-7562 knockdown elevated the expression levels of these genes, thereby enhancing autophagic activity. Our findings further revealed that during V. harveyi infection, miR-7562 continued to influence the autophagic pathway by specifically targeting the ATG5-ATG12 complex. This research not only sheds light on the miRNA-dependent mechanisms governing autophagic immunity in shrimp but also proposes miR-7562 as a promising target for therapeutic strategies intended to strengthen disease resistance within the crustacean aquaculture industry.

11.
Phytother Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895929

ABSTRACT

In 2022, there were around 20 million new cases and over 9.7 million cancer-related deaths worldwide. An increasing number of metabolites with anticancer activity in algae had been isolated and identified, which were promising candidates for cancer therapy. Red algae are well-known for the production of brominated metabolites, including terpenoids and phenols, which have the capacity to induce cell toxicity. Some non-toxic biological macromolecules, including polysaccharides, are distinct secondary metabolites found in many algae, particularly green algae. They possess anticancer activities by inhibiting tumor angiogenesis, stimulating the immune response, and inducing apoptosis. However, the structure-activity relationship between these components and antitumor activity, as well as certain taxa within the algae, remains relatively unstudied. This work is based on the reports published from 2003 to 2024 in PubMed and ISI Web of Science databases. A comprehensive review of the characterized algal anticancer active compounds, together with their structure and mechanism of action was performed. Also, their structure-activity relationship was preliminarily summarized to better assess their potential properties as a natural, safe bioactive product to be used as an alternative for the treatment of cancers, leading to new opportunities for drug discovery.

12.
Phytomedicine ; 132: 155822, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38909512

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a complicated neurodegenerative disease with cognitive impairment occurring in the older people, in which extracellular accumulation of ß-amyloid and intracellular aggregation of hyperphosphorylated tau are regarded as the prevailing theories. However, the exact AD mechanism has not been determined. Moreover, there is no effective treatment available in phase III trials to eradicate AD, which is imperative to explore novel treatments. PURPOSE: A number of up-to-date pre-clinical studies on cognitive impairment is beneficial to clarify the pathology of AD. This review recapitulates several advances in AD pathobiology and discusses the neuroprotective effects of natural compounds, such as phenolic compounds, natural polysaccharides and oligosaccharides, peptide, and lipids, underscoring the therapeutic potential for AD. METHODS: Electronic databases involving PubMed, Web of Science, and Google Scholar were searched up to October 2023. Articles were conducted using the keywords like Alzheimer's disease, pathogenic mechanisms, natural compounds, and neuroprotection. RESULT: This review summarized several AD pathologies and the neuroprotective effects of natural compounds such as natural polysaccharides and oligosaccharides, peptide, and lipids. CONCLUSION: We have discussed the pathogenic mechanisms of AD and the effect natural products on neurodegenerative diseases particularly in treating AD. Specifically, we investigated the molecular pathways and links between natural compounds and Alzheimer's disease such as through NF-κB, Nrf2, and mTOR pathway. Further investigation is necessary in exploring the bioactivity and effectiveness of natural compounds in clinical trials, which may provide a promising treatment for AD patients.

13.
Int J Biol Macromol ; 274(Pt 1): 133071, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871096

ABSTRACT

Plants employ metal tolerance proteins (MTPs) to confer tolerance by sequestering excess ions into vacuoles. MTPs belong to the cation diffusion facilitator (CDF) family, which facilitates the transport of divalent transition metal cations. In this study, we conducted a comprehensive analysis of the MTP gene families across 21 plant species, including maize (Zea mays). A total of 247 MTP genes were identified within these plant genomes and categorized into distinct subgroups, namely Zn-CDF, Mn-CDF, and Fe/Zn-CDF, based on phylogenetic analyses. This investigation encompassed the characterization of genomic distribution, gene structures, cis-regulatory elements, collinearity relationships, and gene ontology functions associated with MTPs. Transcriptomic analyses unveiled stress-specific expression patterns of MTP genes under various abiotic stresses. Moreover, quantitative RT-PCR assays were employed to assess maize MTP gene responses to diverse heavy metal stress conditions. Functional validation of metal tolerance roles was achieved through heterologous expression in yeast. This integrated evolutionary scrutiny of MTP families in cereals furnishes a valuable framework for the elucidation of MTP functions in subsequent studies. Notably, the prioritized MTP gene ZmMTP6 emerged as a positive regulator of plant Cd tolerance, thereby offering a pivotal genetic asset for the development of Cd-tolerant crops, particularly maize cultivars.

14.
Vaccines (Basel) ; 12(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932395

ABSTRACT

Therapeutic HPV vaccines that induce potent HPV-specific cellular immunity and eliminate pre-existing infections remain elusive. Among various candidates under development, those based on DNA constructs are considered promising because of their safety profile, stability, and efficacy. However, the use of electroporation (EP) as a main delivery method for such vaccines is notorious for adverse effects like pain and potentially irreversible muscle damage. Moreover, the requirement for specialized equipment adds to the complexity and cost of clinical applications. As an alternative to EP, lipid nanoparticles (LNPs) that are already commercially available for delivering mRNA and siRNA vaccines are likely to be feasible. Here, we have compared three intramuscular delivery systems in a preclinical setting. In terms of HPV-specific cellular immune responses, mice receiving therapeutic HPV DNA vaccines encapsulated with LNP demonstrated superior outcomes when compared to EP administration, while the naked plasmid vaccine showed negligible responses, as expected. In addition, SM-102 LNP M exhibited the most promising results in delivering candidate DNA vaccines. Thus, LNP proves to be a feasible delivery method in vivo, offering improved immunogenicity over traditional approaches.

15.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930274

ABSTRACT

Additive manufacturing, commonly referred to as 3D printing, is a fabrication method characterized by a layer-by-layer deposition process [...].

16.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930970

ABSTRACT

A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling reaction in 5 min, producing the corresponding azo compound. The strong and specific SERRS response of the azo product allowed for ultrasensitive and selective detection for histidine with an M-TiO2 device loaded with Ag NPs due to the molecular resonance effect and plasmonic effect of Ag NPs under a 532 nm excitation laser. The sensitivity was further enhanced with the magnetic enrichment of M-TiO2. The limit of detection (LOD) was as low as 8.00 × 10-12 mol/L. The M-TiO2 demonstrated applicability towards histidine determination in human urine without any sample pretreatment. Additionally, the M-TiO2 device can be recycled for 3 cycles with the photodegradation of the azo product under UV irradiation due to TiO2-assisted and plasmon-enhanced photocatalysis. In summary, a multifunctional and recyclable M-TiO2 device was synthesized based on azo coupling and SERRS spectroscopy for ultra-sensitive and specific histidine sensing. In addition, the proposed system demonstrated the potential for the multiplex determination of toxic compounds in the fields of food safety, industrial production and environmental protection, which benefit from the fingerprint property and universality of SERRS.


Subject(s)
Histidine , Nanocomposites , Titanium , Titanium/chemistry , Histidine/chemistry , Histidine/urine , Nanocomposites/chemistry , Limit of Detection , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Azo Compounds/chemistry
17.
Mikrochim Acta ; 191(6): 350, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806865

ABSTRACT

Gold nanomaterials have been widely explored in electrochemical sensors due to their high catalytic property and good stability in multi-medium. In this paper, the reproducibility of the signal among batches of gold nanorods (AuNRs)-modified electrodes was investigated to improve the data stabilization and repeatability. Ordered and random self-assembled AuNRs-modified electrodes were used as electrochemical sensors for the simultaneous determination of dopamine (DA) and topotecan (TPC), with the aim of obtaining an improved signal stability in batches of electrodes and realizing the simultaneous determination of both substances. The morphology and structure of the assemblies were analyzed and characterized by UV-Vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). Electrochemical studies showed that the ordered AuNRs/ITO electrodes have excellent signal reproducibility among several individuals due to the homogeneous mass transfer in the ordered arrangement of the AuNRs. Under the optimized conditions, the simultaneous detection results of DA and TPC showed good linearity in the ranges 1.75-45 µM and 1.5-40 µM, and the detection limits of DA and TPC were 0.06 µM and 0.17 µM, respectively. The results showed that the prepared ordered AuNR/ITO electrode had high sensitivity, long-term stability, and reproducibility for the simultaneous determination of DA and TPC, and it was expected to be applicable for real sample testing.


Subject(s)
Dopamine , Electrochemical Techniques , Electrodes , Gold , Limit of Detection , Nanotubes , Topotecan , Dopamine/analysis , Gold/chemistry , Topotecan/analysis , Topotecan/chemistry , Reproducibility of Results , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nanotubes/chemistry , Humans
18.
Nature ; 629(8010): 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38693415

ABSTRACT

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

19.
Biol Proced Online ; 26(1): 12, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714954

ABSTRACT

BACKGROUND: Lung adenocarcinoma metastasizing to the brain results in a notable increase in patient mortality. The high incidence and its impact on survival presents a critical unmet need to develop an improved understanding of its mechanisms. METHODS: To identify genes that drive brain metastasis of tumor cells, we collected cerebrospinal fluid samples and paired plasma samples from 114 lung adenocarcinoma patients with brain metastasis and performed 168 panel-targeted gene sequencing. We examined the biological behavior of PMS2 (PMS1 Homolog 2)-amplified lung cancer cell lines through wound healing assays and migration assays. In vivo imaging techniques are used to detect fluorescent signals that colonize the mouse brain. RNA sequencing was used to compare differentially expressed genes between PMS2 amplification and wild-type lung cancer cell lines. RESULTS: We discovered that PMS2 amplification was a plausible candidate driver of brain metastasis. Via in vivo and in vitro assays, we validated that PMS2 amplified PC-9 and LLC lung cancer cells had strong migration and invasion capabilities. The functional pathway of PMS2 amplification of lung cancer cells is mainly enriched in thiamine, butanoate, glutathione metabolism. CONCLUSION: Tumor cells elevated expression of PMS2 possess the capacity to augment the metastatic potential of lung cancer and establish colonies within the brain through metabolism pathways.

20.
Biochem Genet ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806972

ABSTRACT

Infertility is a condition characterized by a low fertility rate, which significantly affects the physical and mental health of women of reproductive age. Typically, the treatment duration is prolonged, and the therapeutic outcomes are often unsatisfactory. Professor Cheng-yao He, a renowned expert in traditional Chinese medicine, commonly uses the herb Cnidii Fructus (SCZ) for the treatment of infertility. However, the exact mechanism remains unclear, and there is limited research available on this topic. The active ingredients of SCZ were obtained from the traditional chinese medicine system pharmacology (TCMSP) database and screened for pharmacokinetics (PK), involving absorption, distribution, metabolism, and excretion (ADME). Target prediction was performed by SwissTargetPrediction database, and infertility-related disease targets were searched in GeneCards, TTD, DrugBank, and OMIM database. The protein-protein interaction (PPI) network was constructed using the STRING database (Version 11.5) and analyzed by Cytoscape software (Version 3.9.1). Additionally, the target genes were subjected to biological enrichment analysis in the Metascape database, including gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and the "Disease-Ingredient-pathway-target" network was constructed using Cytoscape software. With the assistance of AutoDockVina, Ligplot, and PyMOL software, a validation of Molecular docking results and a visualization of the results were performed. This study identified 11 retained active ingredients of SCZ, 447 drug targets, 233 of which were related to infertility, and 5393 disease targets. GO enrichment analysis mainly involved 221 biological processes such as cellular response to chemical stress and gland development. KEGG enrichment analysis mainly involved 68 pathways such as thyroid hormone signaling pathway, estrogen signaling pathway, FOXO signaling pathway, and PI3K/Akt signaling pathway. Molecular docking showed that the core active ingredients of SCZ, including Ammidin, Diosmetin, Xanthoxylin N, and Prangenidin, had strong binding abilities with core targets such as MDM2, MTOR, CCND1, EGFR, and AKT1. This study preliminarily demonstrated that SCZ may act on the PI3K/Akt signaling pathway, exerting its therapeutic effects on infertility by improving energy metabolism disorders and endometrial receptivity, inducing primordial follicle activation, regulating oocyte proliferation, differentiation, and apoptosis, and promoting the release of dominant follicles.

SELECTION OF CITATIONS
SEARCH DETAIL
...