Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(46): 25214-25221, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37934914

ABSTRACT

We herein report the iridium-catalyzed enantioselective C-H borylation of aryl chlorides. A variety of prochiral biaryl compounds could be well-tolerated, affording a vast array of axially chiral biaryls with high enantioselectivities. The current method exhibits a high turnover number (TON) of 7000, which represents the highest in functional-group-directed asymmetric C-H activation. The high TON was attributed to a weak catalyst-substrate interaction that was caused by mismatched chirality between catalyst and substrate. We also demonstrated the synthetic application of the current method by C-B, ortho-C-H, and C-Cl bond functionalization, including programmed Suzuki-Miyaura coupling for the synthesis of axially chiral polyarenes.

2.
Fitoterapia ; 168: 105542, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172633

ABSTRACT

Seven new C-geranylated flavanones, fortunones F - L (1-7), were isolated from the fresh mature fruits of Paulownia fortunei (Seem.) Hemsl. Their structures were determined by extensive spectroscopic data interpretation (UV, IR, HRMS, NMR, and CD). These new isolated compounds were all with a cyclic side chain modified from the geranyl group. Among them, compounds 1-3 all possessed a dicyclic geranyl modification, which was described firstly for Paulownia C-geranylated flavonoids. All the isolated compounds were subjected to the cytotoxic assay on human lung cancer cell A549, mouse prostate cancer cell RM1 and human bladder cancer cell T24, respectively. Results indicated A549 cell line was more sensitive to C-geranylated flavanones than the other two cancer cell lines and compounds 1, 7 and 8 exhibited potential anti-tumor effects (IC50 ˂ 10 µM). Further research revealed the effective C-geranylated flavanones could exert their anti-proliferative activity on A549 cells by inducing apoptosis and blocking cells in G1 phase.


Subject(s)
Flavanones , Neoplasms , Animals , Mice , Humans , Fruit/chemistry , Molecular Structure , Flavanones/pharmacology , Flavanones/chemistry , Flavonoids/chemistry , Cell Line , Neoplasms/drug therapy
3.
Angew Chem Int Ed Engl ; 57(13): 3396-3400, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29399987

ABSTRACT

A nickel(0)-catalyzed hydroalkenylation of imines with styrene and its derivatives is described. A wide range of aromatic and aliphatic imines directly coupled with styrene and its derivatives, thus providing various synthetically useful allylic amines with up to 95 % yield. The reaction offers a new atom- and step-economical approach to allylic amines by using alkenes instead of alkenyl-metallic reagents. Experiments and DFT calculations showed that TsNH2 promotes the proton transfer from the coordinated olefin to the imine, accompanied by a new C-C bond formation.

4.
J Hazard Mater ; 344: 220-229, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29040932

ABSTRACT

Herein, for the first time, the typical porous Covalent Organic Frameworks (COFs) CTpBD with superior chemical stability and large surface area were applied as sorbents for solid phase extraction of trace ions via flow injection followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The well-prepared and fully-characterized CTpBD COFs were filled in solid phase extraction cartridge as novel and robust adsorbents for element analysis. Separation and enrichment of Cr (III), Mn (II), Co (II), Ni (II), Cd (II), V (V), Cu (II), As (III), Se (IV), and Mo (VI) was then carried out, and the contents were measured by ICP-MS. Owing to the large surface area and instinctive porous structure of CTpBD, preconcentration of the target trace elements via COF-filled on-line SPE column has achieved low detection limits of 2.1-21.6ngL-1 along with a wide linearity range at 0.05-25µgL-1 for all target ions. The relative standard deviations (RSD) of 1.2%-4.3% obtained via 11 parallel determinations at the sample concentration of 100ngL-1 revealed excellent repeatability of the developed methods Our proposed methods have been successfully utilized for trace element analysis in environmental and food samples.

5.
ACS Appl Mater Interfaces ; 9(1): 236-243, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27935274

ABSTRACT

Most of the reported metal organic frameworks (MOFs)-based DNA sensors were developed by utilizing the different adsorption capacities of MOFs to different structural DNAs (for example, single-stranded DNAs (ssDNAs) and double-stranded DNAs (dsDNAs)) or ssDNAs with different lengths. Herein, we introduced another strategy for the design of MOFs-based biosensing platforms. We found that specific small-sized amino acids (for example, glycine and serine) could lead to the destruction of the MOFs formed by [Cu(mal)(bpy)]·2H2O], thus recovering the fluorescence of a fluorophore-labeled ssDNA that had been quenched by MOFs. The corresponding working mechanism was discussed. On the basis of this finding, a mix-and-detect fluorescence method was designed for the turn-on detection of specific small-sized amino acids. The feasibility of its use in real serum samples was also demonstrated. Besides biosensing applications, the discovery of amino acids-triggered destruction of MOFs can also enrich the building blocks of molecular logic gate. As an example, a biomolecular logic gate that performs OR logic operation was constructed using glycine and a DNA strand as inputs.


Subject(s)
Amino Acids/chemistry , Adsorption , DNA , Fluorescent Dyes , Metals
SELECTION OF CITATIONS
SEARCH DETAIL
...