Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(12): e0226752, 2019.
Article in English | MEDLINE | ID: mdl-31887119

ABSTRACT

Presently, concern regarding the effects of selenium (Se) on the environment and organisms worldwide is increasing. Too much Se in the soil is harmful to plants. In this study, Illumina RNA sequencing and the untargeted metabolome of control and Se-treated celery seedlings were analyzed. In total, 297,911,046 clean reads were obtained and assembled into 150,218 transcripts (50,876 unigenes). A total of 36,287 unigenes were annotated using different databases. Additionally, 8,907 differentially expressed genes, including 5,319 up- and 3,588 downregulated genes, were identified between mock and Se-treated plants. "Phenylpropanoid biosynthesis" was the most enriched KEGG pathway. A total of 24 sulfur and selenocompound metabolic unigenes were differentially expressed. Furthermore, 1,774 metabolites and 237 significant differentially accumulated metabolites were identified using the untargeted metabolomic approach. We conducted correlation analyses of enriched KEGG pathways of differentially expressed genes and accumulated metabolites. Our findings suggested that candidate genes and metabolites involved in important biological pathways may regulate Se tolerance in celery. The results increase our understanding of the molecular mechanism responsible for celery's adaptation to Se stress.


Subject(s)
Apium/metabolism , Gene Expression Profiling , Metabolomics , Selenium/pharmacology , Apium/drug effects , Apium/genetics , Drug Tolerance , Gene Expression Regulation, Plant/drug effects , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Sequence Analysis, RNA , Stress, Physiological/drug effects
2.
Mol Plant ; 7(2): 311-22, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23935008

ABSTRACT

The zinc-finger protein STOP1 (sensitive to proton rhizotoxicity 1) regulates transcription of multiple genes critical for tolerance to aluminum (Al) and low pH in Arabidopsis. We evaluated the contributions of genes that are suppressed in the stop1 mutant to Al- and low pH-tolerance using T-DNA-inserted disruptants, and transgenic stop1 mutants expressing each of the suppressed genes. STOP2, a STOP1 homolog, partially recovered Al- and low pH-tolerance by recovering the expression of genes regulated by STOP1. Growth and root tip viability under proton stress were partially rescued in the STOP2-complemented line. STOP2 localized in the nucleus and regulated transcription of two genes (PGIP1 and PGIP2) associated with cell wall stabilization at low pH. GUS assays revealed that STOP1 and STOP2 showed similar cellular expression in the root. However, the expression level of STOP2 was much lower than that of STOP1. In a STOP1 promoter::STOP2-complemented line, Al tolerance was slightly recovered, concomitant with the recovery of expression of ALS3 (aluminum sensitive 3) and AtMATE (Arabidopsis thaliana multidrug and toxic compound extrusion), while the expression of AtALMT1 (aluminum-activated malate transporter 1) was not recovered. These analyses indicated that STOP2 is a physiologically minor isoform of STOP1, but it can activate expression of some genes regulated by STOP1.


Subject(s)
Aluminum/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Trans-Activators/metabolism , Transcription Factors/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Electron Transport , Hydrogen-Ion Concentration , Meristem/genetics , Meristem/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Protein Transport , Trans-Activators/genetics , Transcription Factors/genetics
3.
Physiol Plant ; 137(3): 235-48, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19832939

ABSTRACT

Association mapping analysis of Cd, Cu and H (2)O (2) tolerance, judged by relative root length (RRL: % of root length in stress condition relative to that in control condition), and Cd and Cu translocation ratios (amount of metal in the shoot to the total) were performed using 90 accessions of Arabidopsis thaliana. Using 140 SNPs that were distributed across the genome, association mapping analysis was performed with a haploid setting by the Q + K method, which minimizes detection of false associations by combining the Q-matrix of the structured association (Q) with kinship (K) to control for the population structure. Six, five and five significant (-log (10)P-value is 1.3 > or =) linkages were detected between the SNPs and Cd, Cu and H(2)O(2) resistant RRLs, respectively. In addition, six significant linkages were identified with translocation capacities of Cd and Cu. Among those detected loci, two each of Cu and Cd tolerance RRLs were collocated with those of H(2)O(2) tolerance RRL, while one locus each was detected by Cu and Cd tolerance RRLs that collocated with their translocation ratios. These results suggested that these factors might partly explain the phenotypic variation of tolerance RRLs to Cd and Cu of Arabidopsis thaliana. Finally, using a different approach to analyze interactions between individual phenotypes, namely clustering analysis, we found an expected segregation of resistant SNPs (single-nucleotide polymorphisms) of the multiple RRLs in the typical accession groups carrying multiple traits. Almost none of the loci detected by association mapping analysis were linked to the loci of previously identified critical genes regulating the traits, suggesting that this could be useful to identify complex architecture of genetic factors determining variation among multiple accessions.


Subject(s)
Arabidopsis/genetics , Cadmium/metabolism , Copper/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism , Arabidopsis/metabolism , Chromosome Mapping , Cluster Analysis , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genotype , Phenotype , Plant Roots/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci
4.
BMC Plant Biol ; 9: 32, 2009 Mar 23.
Article in English | MEDLINE | ID: mdl-19309492

ABSTRACT

BACKGROUND: Rhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana. RESULTS: Roots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al) ions, cadmium (Cd) ions, copper (Cu) ions and sodium (NaCl) chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter) in the Al-specific group and DREB (encoding dehydration responsive element binding protein) in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms. CONCLUSION: In order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization. Our analyses revealed that both general and specific genes were induced in Arabidopsis roots exposed to various rhizotoxic ions. Several defense systems, such as the production of reactive oxygen species and disturbance of Ca homeostasis, were triggered by all stressors, while specific defense genes were also induced by individual stressors. Similar studies in different plant species could help to clarify the resistance mechanisms at the molecular level to provide information that can be utilized for marker-assisted selection.


Subject(s)
Aluminum/toxicity , Arabidopsis/drug effects , Cadmium/toxicity , Copper/toxicity , Sodium Chloride/toxicity , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cluster Analysis , DNA, Plant/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Oligonucleotide Array Sequence Analysis , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism
5.
Biosci Biotechnol Biochem ; 70(7): 1780-3, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16861815

ABSTRACT

Transgenic Arabidopsis thaliana plants carrying a single copy of integrated DNA can be identified by single-step genomic polymerase chain reaction. The reaction employs two sets of primer pairs with the same melting temperature that amplify the amplicons derived from the integrated T-DNA together with those from an endogenous single-copy gene as a reference. When the band intensity ratio is one, this means that the transgenic plants are carrying a single copy of the integrated gene per haploid.


Subject(s)
Arabidopsis/genetics , DNA, Plant/genetics , Gene Dosage , Plants, Genetically Modified , Genome, Plant , Heterozygote , Homozygote , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...