Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Accid Anal Prev ; 204: 107620, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38823082

ABSTRACT

As autonomous driving advances, autonomous vehicles will share the road with human drivers. This requires autonomous vehicles to adhere to human traffic laws under safe conditions. Simultaneously, when confronted with dangerous situations, autonomous driving should also possess the capability to deviate from traffic laws to ensure safety. However, current autonomous vehicles primarily prioritize safety and collision avoidance in their decision-making and planning. This may lead to misunderstandings and distrust from human drivers in mixed traffic flow, and even accidents. To address this, this paper proposes a decoupled hierarchical framework for compliance safety decision-making. The framework primarily consists of two layers: the decision-making layer and the motion planning layer. In the decision-making layer, a candidate behavior set is constructed based on the scenario, and a dual layer admission assessment is utilized to filter out unsafe and non-compliant behaviors from the candidate sets. Subsequently, the optimal behavior is selected as the decision behavior according to the designed evaluation metrics. The decision-making layer ensures that the vehicle can meet lane safety requirements and comply with static traffic laws. In the motion planning layer, the surrounding vehicles and the road are modeled as safety potential fields and traffic laws potential fields. Combining the optimal decision behavior, they are incorporated into the cost function of the model predictive control to achieve compliant and safe trajectory planning. The planning layer ensures that the vehicle meets trajectory safety requirements and complies with dynamic traffic laws under safe conditions. Finally, four typical scenarios are used to evaluate the effectiveness of the proposed method. The results indicate that the proposed method can ensure compliance in safe conditions while also temporarily deviating from traffic laws in emergency situations to ensure safety.


Subject(s)
Accidents, Traffic , Automobile Driving , Decision Making , Safety , Humans , Automobile Driving/legislation & jurisprudence , Accidents, Traffic/prevention & control , Accidents, Traffic/legislation & jurisprudence , Safety/legislation & jurisprudence , Automation , Automobiles/legislation & jurisprudence , Models, Theoretical
2.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732839

ABSTRACT

Double-flank measurement is the most commonly used method for full inspection of mass-produced gears and has high measurement efficiency, but it cannot obtain the analytical parameters and is not helpful enough to evaluate the NVH performance of the gears. Based on the double-flank rolling tester with a new principle, a simulation method for double-flank measurement and a solving method for analytical parameters are proposed. Using the simulation method, the double-flank measurements without random error can be obtained through the collision detection algorithm. The solving method uses the iteration to obtain the minimum rolling length of each position of the tooth surface, then obtains the analytical parameters of the gear. In the experiments, the difference between the profile deviations obtained by the solving method and superimposed in the simulation method is less than 0.03 µm. The experiment results have verified the correctness of the simulation method and the solving method. These methods can greatly improve the value of double-flank measurement.

3.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793923

ABSTRACT

This article proposes a new self-calibration method for circular encoders based on inertia and a single read-head. The velocity curves of the circular encoder are fitted with polynomials and, based on the principle of circle closure and the periodicity of the distribution for angle intervals, the proportionality between the theoretical value and the actual value of each angle interval is obtained. In the experimental system constructed, the feasibility of the proposed method was verified through self-calibration experiments, repeatability experiments, and comparative experiments with the time-measurement dynamic reversal (TDR) method. In addition, this article also proposes an iterative method to improve the self-calibration accuracy. Experimental verification was carried out, and the results show that the new method can effectively compensate for the error of angle measurement in the circular encoder. The peak-to-peak value of the error of angle measurement was reduced from 239.343" to 11.867", and the repeatability of the calibration results of the new method was less than 2.77".

4.
Front Bioeng Biotechnol ; 12: 1356135, 2024.
Article in English | MEDLINE | ID: mdl-38600948

ABSTRACT

Introduction: Developmental engineering based on endochondral ossification has been proposed as a potential strategy for repairing of critical bone defects. Bone development is driven by growth plate-mediated endochondral ossification. Under physiological conditions, growth plate chondrocytes undergo compressive forces characterized by micro-mechanics, but the regulatory effect of micro-mechanical loading on endochondral bone formation has not been investigated. Methods: In this study, a periodic static compression (PSC) model characterized by micro-strain (with 0.5% strain) was designed to clarify the effects of biochemical/mechanical cues on endochondral bone formation. Hydrogel scaffolds loaded with bone marrow mesenchymal stem cells (BMSCs) were incubated in proliferation medium or chondrogenic medium, and PSC was performed continuously for 14 or 28 days. Subsequently, the scaffold pretreated for 28 days was implanted into rat femoral muscle pouches and femoral condylar defect sites. The chondrogenesis and bone defect repair were evaluated 4 or 10 weeks post-operation. Results: The results showed that PSC stimulation for 14 days significantly increased the number of COL II positive cells in proliferation medium. However, the chondrogenic efficiency of BMSCs was significantly improved in chondrogenic medium, with or without PSC application. The induced chondrocytes (ichondrocytes) spontaneously underwent hypertrophy and maturation, but long-term mechanical stimulation (loading for 28 days) significantly inhibited hypertrophy and mineralization in ichondrocytes. In the heterotopic ossification model, no chondrocytes were found and no significant difference in terms of mineral deposition in each group; However, 4 weeks after implantation into the femoral defect site, all scaffolds that were subjected to biochemical/mechanical cues, either solely or synergistically, showed typical chondrocytes and endochondral bone formation. In addition, simultaneous biochemical induction/mechanical loading significantly accelerated the bone regeneration. Discussion: Our findings suggest that microstrain mechanics, biochemical cues, and in vivo microenvironment synergistically regulate the differentiation fate of BMSCs. Meanwhile, this study shows the potential of micro-strain mechanics in the treatment of critical bone defects.

5.
Nat Commun ; 15(1): 408, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195672

ABSTRACT

Defined traffic laws must be respected by all vehicles when driving on the road, including self-driving vehicles without human drivers. Nevertheless, the ambiguity of human-oriented traffic laws, particularly compliance thresholds, poses a significant challenge to the implementation of regulations on self-driving vehicles, especially in detecting illegal driving behaviors. To address these challenges, here we present a trigger-based hierarchical online monitor for self-assessment of driving behavior, which aims to improve the rationality and real-time performance of the monitoring results. Furthermore, the general principle to determine the ambiguous compliance threshold based on real driving behaviors is proposed, and the specific outcomes and sensitivity of the compliance threshold selection are analyzed. In this work, the effectiveness and real-time capability of the online monitor were verified using both Chinese human driving behavior datasets and real vehicle field tests, indicating the potential for implementing regulations in self-driving vehicles for online monitoring.

6.
Anal Methods ; 16(4): 608-614, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38197306

ABSTRACT

This study focused on creating a SERS composite particle specifically designed for detecting malachite green. We synthesized silver nano-dendritic structures on p-type porous silicon using an external electric field, separating them from the silicon wafer. Ultrasonic crushing yielded irregular silver nanodendrite-modified porous silicon composite particles. Upon being tested in an aqueous solution of malachite green, these composite particles demonstrated significant surface-enhanced Raman scattering effects. Our findings highlight the exceptional performance of the SERS substrate composed of porous silicon and irregular silver nano-dendritic particles. It exhibited high sensitivity, specificity, consistent signal strength, and reliability in detecting trace amounts of malachite green in water. Under ideal conditions, the substrate could detect malachite green at concentrations as low as 10-8 M. Moreover, its swift response to trace amounts of malachite green in fish underscores its potential as an effective Raman detector.

7.
J Orthop Translat ; 44: 88-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282752

ABSTRACT

Background: Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo. Methods: First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence. Results: Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters. Conclusion: Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans. The translational potential of this article: Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.

8.
Sensors (Basel) ; 23(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139574

ABSTRACT

Double-flank measurement is the most commonly used full inspection method on the shop floor. However, the double-flank measurement method cannot measure analytical parameters such as pitch deviations and profile deviations, and this limitation is a pain point in the field of gear measurement. This paper studies the measurability of the analytical parameters of gears based on the results of double-flank measurement, proposes the definition of measurable area, and gives the relationship between the size of the measurable area and the number of teeth and the pressure angle and the gear error. Digital simulation methods were used to conduct measurement experiments on gear analytical parameters. In the experiments, the measurability of the analytical parameters of gears with various typical profile deviations in the double-flank measurement process was verified and analyzed. The test results show that not all profile deviations are unmeasurable in the process of double-flank measurement, but there exists a profile region in which the analytical parameters of the gear can be measured accurately. The size of the measurable area of the profile is mainly determined by the number of teeth and pressure angle of the gear, while the pitch deviations are always measurable under normal conditions.

9.
Sensors (Basel) ; 23(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38005405

ABSTRACT

The clarity evaluation function plays a vital role in the autofocus technique. The accuracy and efficiency of the image clarity evaluation function directly affects the accuracy of autofocus and the speed of focusing. However, classical clarity function values are sensitive to changes in background brightness and changes in object contour length. This paper proposes a normalized absolute values adaptive (NAVA) evaluation function of image clarity. It can eliminate the influence of changes in background brightness and the length of the measured object contour on the image clarity function value. To verify the effectiveness of the NAVA function, several experiments were conducted under conditions of virtual master gear images and actual captured images. For actual captured images, the variation of the evaluation results of the NAVA function is far less than the corresponding variation of the classic clarity function. Compared with classical clarity evaluation functions, the NAVA function can provide normalized absolute clarity values. The correlations between the NAVA function results of image clarity and both the contour length and background brightness of the tested object are weak. The use of the NAVA function in automatic and manual focusing systems can further improve focusing efficiency.

10.
Int Wound J ; 20(7): 2518-2527, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36796354

ABSTRACT

We aimed to explore the efficacy and safety of ultrasound-guided foam sclerotherapy combined with endoluminal radiofrequency closure in patients with varicose veins of lower extremities (VVLEs); furthermore, we aimed to provide a theoretical basis for the effective management of VVLE patients in clinical work. From January 1, 2020, to March 1, 2021, 88 patients with VVLE admitted to Third Hospital of Shandong Province were included in this retrospective study. Depending on the type of treatment, the patients were divided into study groups and control groups. The study group consisted of 44 patients who were given ultrasound-guided foam sclerotherapy combined with endoluminal radiofrequency closure. The control group consisted of 44 patients who were given high ligation and stripping of the great saphenous vein. Efficacy indicators included postoperative venous clinical severity score (VCSS) of affected limb and postoperative visual analogue scale (VAS) score. Safety indicators included length of operation, intraoperative blood loss, length of postoperative rest in bed, length of hospital stay, postoperative heart rate, preoperative blood saturation (SpO2 ), preoperative mean arterial pressure (MAP), and complications. The VCSS score 6 months after operation in the study group was significantly lower than that in the control group (P < .05). The pain VAS score in the study group was significantly lower than that in the control group at 1 and 3 days after operation (both P < .05). Compared with the control group, the study group was significantly lower in length of operation, intraoperative blood loss, postoperative in-bed time, and hospital stays (all P < .05). Heart rate and SpO2 were significantly higher, and MAP was significantly lower in the study group compared with that in the control group 12 hours after surgery (all P < .05). The overall postoperative complication rate in the study group was significantly lower than that in the control group (P < .05). In conclusion, compared with surgical treatment of high ligation and stripping of the great saphenous vein, ultrasound-guided foam sclerotherapy combined with endoluminal radiofrequency ablation for the treatment of VVLE disease has better efficacy and safety, which is worthy of clinical promotion.


Subject(s)
Sclerotherapy , Varicose Veins , Humans , Sclerotherapy/adverse effects , Retrospective Studies , Treatment Outcome , Varicose Veins/complications , Ultrasonography, Interventional , Saphenous Vein/surgery , Saphenous Vein/diagnostic imaging , Lower Extremity
11.
Food Res Int ; 157: 111345, 2022 07.
Article in English | MEDLINE | ID: mdl-35761614

ABSTRACT

Heat treatment is an important processing technique related to milk quality and nutritional value in the dairy industry. In this study, changes in milk lipids in response to different heat treatments were comprehensively characterized using a lipidomic approach. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) were used to identify and quantify 29 classes and 788 different lipids. In general, heat treatment promoted milk lipid hydrolysis and oxidation; in particular, ultra-high temperature (UHT) treatment resulted in more phospholipid hydrolysis than did pasteurization and extended shelf-life (ESL) treatment. Heat treatment resulted in further lipid oxidation reactions and a reduction in the amount of mild oxidation products. Moreover, the levels of lysophospholipids and free fatty acids (including oxidized free fatty acids) can be used to distinguish UHT-treated milk. In turn, oxidized phosphatidylcholine, oxidized phosphatidylethanolamine, ether-linked phosphatidylethanolamine, diacylglycerol, triacylglycerol, and oxidized triacylglycerol can be used to differentiate raw, pasteurized, and ESL milk. These biomarkers can potentially be used in the dairy industry to monitor the degree and method of heat treatment of milk.


Subject(s)
Lipidomics , Milk , Animals , Fatty Acids, Nonesterified/analysis , Hot Temperature , Milk/chemistry , Phosphatidylethanolamines/analysis , Triglycerides/analysis
12.
Anal Bioanal Chem ; 414(7): 2453-2460, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35122142

ABSTRACT

Illegal adulteration of melamine in animal feed and food has been widely studied. However, the risk of using substitute non-protein nitrogen substances still exists. In this study, we developed the 13C NMR method for the detection of non-protein nitrogen substance adulteration in animal feed. Three compounds, i.e., urea, melamine, and biuret, were used for method development. We found that the chemical shifts of the characteristic peaks in the carbon spectra of high-nitrogen adulterants were all between 150 and 170 ppm, whereas the chemical shifts of real protein peptide bonds (-CO-NH-) were between 170 and 180 ppm, demonstrating a good distinction between non-protein nitrogen and authentic protein. The method for analyzing melamine, urea, and biuret was validated. The R2 values were all above 0.99 within the calibration range of 0.05-2% (w/w). The limits of quantification of urea, melamine, and biuret were 0.0120%, 0.0660%, and 0.0806%, respectively. This method involves simple sample pretreatment and rapid detection while also providing high accuracy. All the sample information obtained by NMR detection does not require strict impurity removal. Compared with a previously reported 1H NMR method, the developed 13C NMR method does not require strict moisture removal to avoid active hydrogen exchange, and the interfering peak overlap is mitigated.


Subject(s)
Food Contamination , Milk , Animal Feed , Animals , Food Contamination/analysis , Milk/chemistry , Nitrogen/analysis , Triazines/analysis , Urea/analysis
13.
Opt Express ; 27(19): 26569-26578, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674535

ABSTRACT

Terahertz plasmon emission is the key to getting terahertz radiation, which has resulted in numerous studies on it. In this paper, we present the results of a theoretical investigation of terahertz plasmon emission by drifting electrons in a grated graphene system driven by an electric field by applying the Boltzmann's equilibrium equation method. The results show that plasmon frequencies from terahertz to infrared are generated by drifting electrons through the interaction between plasmons and electrons. Obvious increase of the plasmon emission strength with the driving electric field can be seen when the electric field is more than a certain strength (e.g. 1.0 kV/cm). The effects of electron density and the grating period on the emission strength of plasmons were also investigated. It was found that terahertz plasmons can be obtained by applying a grating with appropriate period. The plasmon frequencies can be tuned using either the driving electric field or the electron density controlled by the gate voltage or the grating parameters. This work may help to gain insight into graphene plasmonics and be pertinent to the application of graphene-based structures as electrically tunable terahertz plasmonic devices.

14.
J Agric Food Chem ; 67(22): 6423-6431, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31013075

ABSTRACT

Deoxynivalenol (DON) is a type of mycotoxin that is disruptive to intestinal and immune systems. To better understand the molecular effects of DON exposure, we performed genome-wide comparisons of DNA methylation and gene expression from porcine intestinal epithelial cell IPEC-J2 upon DON exposure using reduced representation bisulfite sequencing and RNA-seq technologies. We characterized the methylation pattern changes and found 3030 differentially methylated regions. Moreover, 3226 genes showing differential expression were enriched in pathways of protein and nucleic acid synthesis and ribosome biogenesis. Integrative analysis identified 29 genes showing inverse correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon DON exposure. Our data provided new insights into epigenetic and transcriptomic alterations of intestinal epithelial cells upon DON exposure and may advance the identification of biomarkers and drug targets for predicting and controlling the toxic effects of this common mycotoxin.


Subject(s)
Epithelial Cells/drug effects , Intestines/chemistry , Swine/genetics , Trichothecenes/toxicity , Animals , DNA Methylation/drug effects , Epithelial Cells/chemistry , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Profiling , Genome , Intestinal Mucosa/chemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Swine/metabolism
15.
Opt Lett ; 40(19): 4524-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26421572

ABSTRACT

We propose a graphene-based plasmonic heterostructure in which a new class of plasmon polariton modes can be realized via fundamental coupling of conventional graphene plasmons (GPs) and spoof surface plasmons or radiation modes. We name these electromagnetic modes coupled graphene plasmon polaritons (CGPPs). It is found that the properties of the CGPPs can be tuned by the geometry of the heterostructure, the material used to fill the holes, and the electron density in graphene. Most interestingly, we show that it is possible to achieve CGPPs with about 10 times enhancement of wave localization or about 300 times enhancement of propagation length, compared to usual GPs through varying device parameters. These features can be applied to tunable terahertz and infrared plasmonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...