Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2306, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085504

ABSTRACT

Finding highly efficient hydrogen evolution reaction (HER) catalysts is pertinent to the ultimate goal of transformation into a net-zero carbon emission society. The design principles for such HER catalysts lie in the well-known structure-property relationship, which guides the synthesis procedure that creates catalyst with target properties such as catalytic activity. Here we report a general strategy to synthesize 10 kinds of single-atom-doped CoSe2-DETA (DETA = diethylenetriamine) nanobelts. By systematically analyzing these products, we demonstrate a volcano-shape correlation between HER activity and Co atomic configuration (ratio of Co-N bonds to Co-Se bonds). Specifically, Pb-CoSe2-DETA catalyst reaches current density of 10 mA cm-2 at 74 mV in acidic electrolyte (0.5 M H2SO4, pH ~0.35). This striking catalytic performance can be attributed to its optimized Co atomic configuration induced by single-atom doping.

2.
Nat Commun ; 14(1): 530, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725854

ABSTRACT

Core-shell bimetallic nanocatalysts have attracted long-standing attention in heterogeneous catalysis. Tailoring both the core size and shell thickness to the dedicated geometrical and electronic properties for high catalytic reactivity is important but challenging. Here, taking Au@Pd core-shell catalysts as an example, we disclose by theory that a large size of Au core with a two monolayer of Pd shell is vital to eliminate undesired lattice contractions and ligand destabilizations for optimum benzyl alcohol adsorption. A set of Au@Pd/SiO2 catalysts with various core sizes and shell thicknesses are precisely fabricated. In the benzyl alcohol oxidation reaction, we find that the activity increases monotonically with the core size but varies nonmontonically with the shell thickness, where a record-high activity is achieved on a Au@Pd catalyst with a large core size of 6.8 nm and a shell thickness of ~2-3 monolayers. These findings highlight the conjugated dual particle size effect in bimetallic catalysis.

3.
J Am Chem Soc ; 143(45): 18854-18858, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34730347

ABSTRACT

Controlling the chemical environments of the active metal atom including both coordination number (CN) and local composition (LC) is vital to achieve active and stable single-atom catalysts (SACs), but remains challenging. Here we synthesized a series of supported Pt1 SACs by depositing Pt atoms onto the pretuned anchoring sites on nitrogen-doped carbon using atomic layer deposition. In hydrogenation of para-chloronitrobenzene, the Pt1 SAC with a higher CN about four but less pyridinic nitrogen (Npyri) content exhibits a remarkably high activity along with superior recyclability compared to those with lower CNs and more Npyri. Theoretical calculations reveal that the four-coordinated Pt1 atoms with about 1 eV lower formation energy are more resistant to agglomerations than the three-coordinated ones. Composition-wise decrease of the Pt-Npyri bond upshifts gradually the Pt-5d center, and minimal one Pt-Npyri bond features a high-lying Pt-5d state that largely facilitates H2 dissociation, boosting hydrogenation activity remarkably.

4.
Int J Mol Sci ; 22(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34638672

ABSTRACT

Flowering is an important developmental process from vegetative to reproductive growth in plant; thus, it is necessary to analyze the genes involved in the regulation of flowering time. The MADS-box transcription factor family exists widely in plants and plays an important role in the regulation of flowering time. However, the molecular mechanism of GmFULc involved in the regulation of plant flowering is not very clear. In this study, GmFULc protein had a typical MADS domain and it was a member of MADS-box transcription factor family. The expression analysis revealed that GmFULc was induced by short days (SD) and regulated by the circadian clock. Compared to wild type (WT), overexpression of GmFULc in transgenic Arabidopsis caused significantly earlier flowering time, while ful mutants flowered later, and overexpression of GmFULc rescued the late-flowering phenotype of ful mutants. ChIP-seq of GmFULc binding sites identified potential direct targets, including TOPLESS (TPL), and it inhibited the transcriptional activity of TPL. In addition, the transcription levels of FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and LEAFY (LFY) in the downstream of TPL were increased in GmFULc- overexpressionArabidopsis, suggesting that the early flowering phenotype was associated with up-regulation of these genes. Our results suggested that GmFULc inhibited the transcriptional activity of TPL and induced expression of FT, SOC1 and LFY to promote flowering.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Glycine max/genetics , Plants, Genetically Modified/genetics , Circadian Clocks/genetics , Flowers/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Photoperiod , Plant Leaves/genetics , Reproduction/genetics
5.
ACS Catal ; 11(14): 8621-8634, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34306815

ABSTRACT

Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations, we conclusively demonstrate that acetaldehyde (AcH) undergoes aldol condensation when flown over ceria octahedral nanoparticles, and the reaction is desorption-limited at ambient temperature. trans-Crotonaldehyde (CrH) is the predominant product whose coverage builds up on the catalyst with time on stream. The proposed mechanism on CeO2(111) proceeds via AcH enolization (i.e., α C-H bond scission), C-C coupling, and further enolization and dehydroxylation of the aldol adduct, 3-hydroxybutanal, to yield trans-CrH. The mechanism with its DFT-calculated parameters is consistent with reactivity at ambient temperature and with the kinetic behavior of the aldol condensation of AcH reported on other oxides. The slightly less stable cis-CrH can be produced by the same mechanism depending on how the enolate and AcH are positioned with respect to each other in C-C coupling. All vibrational modes in DRIFTS are identified with AcH or trans-CrH, except for a feature at 1620 cm-1 that is more intense relative to the other bands on the partially reduced ceria sample than on the oxidized sample. It is identified to be the C=C stretch mode of CH3CHOHCHCHO adsorbed on an oxygen vacancy. It constitutes a deep energy minimum, rendering oxygen vacancies an inactive site for CrH formation under given conditions.

6.
Chemphyschem ; 21(21): 2417-2425, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33063907

ABSTRACT

Supported single transition metal (TM1 ) catalysts have attracted broad attention in academia recently. Still, their corresponding reactivity and stability under reaction conditions are critical but have not well explored at the fundamental level. Herein, we use density functional theory calculation and ab initio molecular dynamics simulation to investigate the role of reactants and ligands on the reactivity and stability of graphitic carbon nitride (g-C3 N4 ) supported Ni1 for CO oxidation. We find out that supported bare Ni1 atoms are only metastable on the surface and tend to diffuse into the interlayer of g-C3 N4 . Though Ni1 is catalytically active at moderate temperatures, CO adsorption induced dimerization deactivates the catalyst. Hydroxyl groups not only are able to stabilize the supported Ni1 atom, but also increase the reactivity by participating directly in the reaction. Our results provide valuable insights on improving the chemical stability of TM1 by ligands without sacrificing the reactivity, which are helpful for the rational design of highly loaded atomically dispersed supported metal catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...