Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 1-5, 2024 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-38322522

ABSTRACT

Mechanobiology focuses on a series of important physiopathological processes, such as how cells perceive different mechanomechanical stimuli, the process of intracellular mechanotransduction, and how mechanical signals determine the behavior and fate of cells. From the initial stage of embryogenesis, to developmental biology and regenerative medicine, or even through the whole life process, mechanical signaling cascades and cellular mechanical responses in mechanobiology are of great significance in biomedical research. In recent years, research in the field of mechanobiology has undergone remarkable development. Several scientific consortia around the world have been analyzing mechanobiological processes from different perspectives, aiming to gain insights into the regulatory mechanisms by which mechanical factors affect cell fate determination. In this article, we summarized and reviewed the topics that have attracted more research interests in recent years in the field of mechanobiology, for example, arterial blood vessels, stem cell, and ion channel. We also discussed the potential trends that may emerge, such as nuclear deformation, fibrous extracellular matrix, tumor mechanobiology, cellular mechanotransduction, and piezo ion channels. In addition, we put forward new ideas concerning the limitations of mechanism research and the importance of big data analysis and mining in this field, thereby providing objective support and a systematic framework for grasping the hot research topics and exploring new research directions in the field of mechanobiology.


Subject(s)
Mechanotransduction, Cellular , Signal Transduction , Mechanotransduction, Cellular/physiology , Ion Channels/metabolism , Extracellular Matrix/metabolism , Biophysics
2.
Nat Commun ; 14(1): 6457, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833282

ABSTRACT

Mechanotransduction in endothelial cells is critical to maintain vascular homeostasis and can contribute to disease development, yet the molecules responsible for sensing flow remain largely unknown. Here, we demonstrate that the discoidin domain receptor 1 (DDR1) tyrosine kinase is a direct mechanosensor and is essential for connecting the force imposed by shear to the endothelial responses. We identify the flow-induced activation of endothelial DDR1 to be atherogenic. Shear force likely causes conformational changes of DDR1 ectodomain by unfolding its DS-like domain to expose the buried cysteine-287, whose exposure facilitates force-induced receptor oligomerization and phase separation. Upon shearing, DDR1 forms liquid-like biomolecular condensates and co-condenses with YWHAE, leading to nuclear translocation of YAP. Our findings establish a previously uncharacterized role of DDR1 in directly sensing flow, propose a conceptual framework for understanding upstream regulation of the YAP signaling, and offer a mechanism by which endothelial activation of DDR1 promotes atherosclerosis.


Subject(s)
Discoidin Domain Receptor 1 , Receptor Protein-Tyrosine Kinases , Discoidin Domain Receptor 1/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Mechanotransduction, Cellular , Endothelial Cells/metabolism , Signal Transduction
3.
Theranostics ; 13(13): 4392-4411, 2023.
Article in English | MEDLINE | ID: mdl-37649604

ABSTRACT

Background: Increasing evidence suggests that hemodynamic disturbed flow induces endothelial dysfunction via a complex biological process so-called endothelial to mesenchymal transition (EndoMT). Recently, DNA methyltransferases (DNMTs) was reported as a key molecular mediator to promote EndoMT. Our understanding of how DNMTs, particularly the maintenance DNMTs, DNMT1, coordinate EndoMT is still lacking. Methods: A parallel-plate flow apparatus and perfusion devices were used to apply fluid with endothelial protective pulsatile shear (PS, to mimic the laminar flow) or harmful oscillatory shear (OS, to mimic the disturbed flow) to cultured endothelial cells (ECs). Endothelial lineage tracing mice and conditional EC Dnmt1 knockout mice were subjected to a surgery of carotid partial ligation to generate the flow-accelerated atherogenesis models. Western blotting, quantitative RT-PCR, immunofluorescent staining, methylation-specific PCR, chromatin immunoprecipitation, endothelial functional assays, and assessments for neointimal formation and atherosclerosis were performed. Results: Inhibition of DNMTs with 5-aza-2'-deoxycytidine (5-Aza) suppressed the disturbed flow/OS-induced EndoMT, both in cultured cells and the endothelial lineage tracing mice. 5-Aza also ameliorated the downregulation of aldehyde dehydrogenases (ALDHs) and ß-alanine biosynthesis caused by disturbed flow/OS. Knockdown of the ALDH family proteins, ALDH2, ALDH3A1, and ALDH6A1, showed an EndoMT-induction effect as OS. Supplementation of cells with the functional metabolites of ß-alanine, carnosine and acetyl-CoA (acetate), reversed EndoMT, likely via inhibiting the phosphorylation of Smad2/3. Endothelial-specific knockout of Dnmt1 protected the vasculature from disturbed flow-induced remodeling and atherosclerosis. Conclusions: Endothelial DNMT1 acts as one of the key epigenetic factors to mediate the hemodynamically regulated EndoMT at least through repressing the expression of ALDH2, ALDH3A1, and ALDH6A1. Supplementation with carnosine and acetate may have a great potential in the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Carnosine , DNA (Cytosine-5-)-Methyltransferase 1 , Animals , Mice , Aldehyde Dehydrogenase , Aldehyde Dehydrogenase, Mitochondrial , Azacitidine , DNA Modification Methylases , Endothelial Cells , Homeostasis , DNA (Cytosine-5-)-Methyltransferase 1/metabolism
4.
NPJ Regen Med ; 8(1): 29, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291182

ABSTRACT

Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.

5.
Circ Res ; 132(1): 87-105, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36475898

ABSTRACT

BACKGROUND: The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS: We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS: We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS: These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.


Subject(s)
Hippo Signaling Pathway , Histidine , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Collagen , Collagen Type I
6.
Small ; 19(2): e2204694, 2023 01.
Article in English | MEDLINE | ID: mdl-36403215

ABSTRACT

Disturbed blood flow induces endothelial pro-inflammatory responses that promote atherogenesis. Nanoparticle-based therapeutics aimed at treating endothelial inflammation in vasculature where disturbed flow occurs may provide a promising avenue to prevent atherosclerosis. By using a vertical-step flow apparatus and a microfluidic chip of vascular stenosis, herein, it is found that the disk-shaped versus the spherical nanoparticles exhibit preferential margination (localization and adhesion) to the regions with the pro-atherogenic disturbed flow. By employing a mouse model of carotid partial ligation, superior targeting and higher accumulation of the disk-shaped particles are also demonstrated within disturbed flow areas than that of the spherical particles. In hyperlipidemia mice, administration of disk-shaped particles loaded with hypomethylating agent decitabine (DAC) displays greater anti-inflammatory and anti-atherosclerotic effects compared with that of the spherical counterparts and exhibits reduced toxicity than "naked" DAC. The findings suggest that shaping nanoparticles to disk is an effective strategy for promoting their delivery to atheroprone endothelia.


Subject(s)
Atherosclerosis , Nanoparticles , Animals , Mice , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Carotid Arteries
8.
Biochem Biophys Res Commun ; 607: 166-173, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35381387

ABSTRACT

Von Willebrand Factor (VWF) can promote platelet adhesion to the post-atherosclerotic regions to initiate thrombosis. The synthesis and secretion of VWF are important functions of endothelial cells (ECs). However, the mechanism through which blood flow regulates endothelial secretion of VWF remains unclear. We utilized a parallel-plate flow apparatus to apply fluid shear stress to human umbilical vein endothelial cells (HUVECs). Compared with pulsatile shear stress that mimics laminar flow in the straight parts of arteries or upstream of atherosclerotic stenosis sites, short-term exposure to oscillatory shear stress (OS) that mimics disturbed flow increased VWF secretion independent of affecting synaptosomal-associated protein 23 (SNAP23) expression and promoted the translocation of SNAP23 to the cell membrane. Vimentin associated with SNAP23, and this association was enhanced by OS or histamine. Acrylamide, a reagent that disrupts vimentin intermediate filaments, prevented histamine/OS-induced SNAP23 translocation, as well as VWF secretion. Immunofluorescence analysis revealed that the polarity of the vimentin intermediate filament network decreased after stimulation with histamine or OS. In addition, inhibition of protein kinase A (PKA) or G protein coupled receptor 68 (GPR68) eliminated the histamine/OS-induced phosphorylation of vimentin at Ser38 and secretion of VWF. Furthermore, syntaxin 7 might assist with the translocation of SNAP23 to the cell membrane, thus playing a role in promoting VWF secretion. The GPR68/PKA/vimentin signaling pathway may represent a novel mechanism for the regulation of SNAP23-mediated VWF secretion by ECs under OS and provide strategies for the prevention of atherosclerosis-related thrombosis.


Subject(s)
Thrombosis , von Willebrand Factor , Cyclic AMP-Dependent Protein Kinases/metabolism , Histamine/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intermediate Filaments/metabolism , Mechanotransduction, Cellular , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Stress, Mechanical , Thrombosis/metabolism , Vimentin/metabolism , von Willebrand Factor/metabolism
9.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34810252

ABSTRACT

Vascular endothelial cells are exposed to shear stresses with disturbed vs. laminar flow patterns, which lead to proinflammatory vs. antiinflammatory phenotypes, respectively. Effective treatment against endothelial inflammation and the consequent atherogenesis requires the identification of new therapeutic molecules and the development of drugs targeting these molecules. Using Connectivity Map, we have identified vitexin, a natural flavonoid, as a compound that evokes the gene-expression changes caused by pulsatile shear, which mimics laminar flow with a clear direction, vs. oscillatory shear (OS), which mimics disturbed flow without a clear direction. Treatment with vitexin suppressed the endothelial inflammation induced by OS or tumor necrosis factor-α. Administration of vitexin to mice subjected to carotid partial ligation blocked the disturbed flow-induced endothelial inflammation and neointimal formation. In hyperlipidemic mice, treatment with vitexin ameliorated atherosclerosis. Using SuperPred, we predicted that apurinic/apyrimidinic endonuclease1 (APEX1) may directly interact with vitexin, and we experimentally verified their physical interactions. OS induced APEX1 nuclear translocation, which was inhibited by vitexin. OS promoted the binding of acetyltransferase p300 to APEX1, leading to its acetylation and nuclear translocation. Functionally, knocking down APEX1 with siRNA reversed the OS-induced proinflammatory phenotype, suggesting that APEX1 promotes inflammation by orchestrating the NF-κB pathway. Animal experiments with the partial ligation model indicated that overexpression of APEX1 negated the action of vitexin against endothelial inflammation, and that endothelial-specific deletion of APEX1 ameliorated atherogenesis. We thus propose targeting APEX1 with vitexin as a potential therapeutic strategy to alleviate atherosclerosis.


Subject(s)
Apigenin/genetics , Apigenin/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Endothelial Cells/metabolism , Active Transport, Cell Nucleus , Animals , Atherosclerosis , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Inflammation , Mice , Phenotype , Phosphorylation , Protein Binding , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , p300-CBP Transcription Factors/metabolism
10.
Article in English | MEDLINE | ID: mdl-32671044

ABSTRACT

Atherosclerotic plaque preferentially develops in arterial curvatures and branching regions, where endothelial cells constantly experience disturbed blood flow. By contrast, the straight arteries are generally protected from plaque formation due to exposure of endothelial cells to vaso-protective laminar blood flow. However, the role of flow patterns on endothelial barrier function remains largely unclear. This study aimed to investigate new mechanisms underlying the blood flow pattern-regulated endothelial integrity. Exposure of human endothelial cells to pulsatile shear (PS, mimicking the laminar flow) compared to oscillatory shear (OS, mimicking the disturbed flow) increased the expressions of long non-coding RNA MALAT1 and tight junction proteins ZO1 and Occludin. This increase was abolished by knocking down MALAT1 or Nesprin1 and 2. PS promoted the association between Nesprin1 and SUN2 at the nuclear envelopes, and induced a nuclear translocation of ß-catenin, likely through enhancing the interaction between ß-catenin and Nesprin1. In the in vivo study, mice were treated via intraperitoneal injection with ß-catenin agonist SKL2001 or its inhibitor XAV939, and they were then subjected to Evans blue injection to assess aortic endothelial permeability. The aortas exhibited a reduced wall permeability to Evans blue in SKL2001-treated mice whereas an enhanced permeability in XAV939-treated mice. We concluded that laminar flow promotes nuclear localization of Nesprins, which facilitates the nuclear access of ß-catenin to stimulate MALAT1 transcription, resulting in increased expressions of ZO1 and Occludin to protect endothelial barrier function.

11.
Cell Death Dis ; 11(1): 35, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959742

ABSTRACT

Vascular smooth muscle cell (SMC) from arterial stenotic-occlusive diseases is featured with deficiency in mitochondrial respiration and loss of cell contractility. However, the regulatory mechanism of mitochondrial genes and mitochondrial energy metabolism in SMC remains elusive. Here, we described that DNA methyltransferase 1 (DNMT1) translocated to the mitochondria and catalyzed D-loop methylation of mitochondrial DNA in vascular SMCs in response to platelet-derived growth factor-BB (PDGF-BB). Mitochondrial-specific expression of DNMT1 repressed mitochondrial gene expression, caused functional damage, and reduced SMC contractility. Hypermethylation of mitochondrial D-loop regions were detected in the intima-media layer of mouse carotid arteries subjected to either cessation of blood flow or mechanical endothelial injury, and also in vessel specimens from patients with carotid occlusive diseases. Likewise, the ligated mouse arteries exhibited an enhanced mitochondrial binding of DNMT1, repressed mitochondrial gene expression, defects in mitochondrial respiration, and impaired contractility. The impaired contractility of a ligated vessel could be restored by ex vivo transplantation of DNMT1-deleted mitochondria. In summary, we discovered the function of DNMT1-mediated mitochondrial D-loop methylation in the regulation of mitochondrial gene transcription. Methylation of mitochondrial D-loop in vascular SMCs contributes to impaired mitochondrial function and loss of contractile phenotype in vascular occlusive disease.


Subject(s)
DNA Methylation/genetics , DNA, Mitochondrial/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Animals , Becaplermin/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Respiration/drug effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/drug effects , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Muscle, Smooth, Vascular/drug effects , Vascular Diseases/genetics , Vascular Diseases/pathology
12.
Sci Rep ; 7(1): 15539, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138498

ABSTRACT

Endothelial cell apoptosis induced by oxidative stress is an early event in the development of atherosclerosis. Several antioxidant enzymes which can cope with oxidative stress are up-regulated by the anti-atherogenic laminar blood flow often seen in straight or unbranched regions of blood vessels. However, the molecular mechanism responsible for flow-induced beneficial effects is incompletely understood. Here we report the role of glutaredoxin 1 (Grx1), an antioxidant enzyme, in flow-mediated protective effect in endothelial cells. Specifically, we found that Grx1 is markedly up-regulated by the steady laminar flow. Increasing Grx1 reduces the pro-apoptotic protein Bim expression through regulating Akt-FoxO1 signaling and also attenuates H2O2-induced Bim activation via inhibiting JNK phosphorylation, subsequently preventing the apoptosis of endothelial cells. Grx1 knockdown abolishes the inhibitory effect of steady laminar flow on Bim. The inhibitory effect of Grx1 on Bim is dependent on Grx1's thioltransferase activity. These findings indicate that Grx1 induction plays a key role in mediating the protective effect of laminar blood flow and suggest that Grx1 may be a potential therapeutic target for atherosclerosis.


Subject(s)
Apoptosis , Atherosclerosis/pathology , Bcl-2-Like Protein 11/metabolism , Glutaredoxins/physiology , Oxidative Stress , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Forkhead Box Protein O1/metabolism , Glutaredoxins/genetics , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation
13.
Sci Rep ; 7(1): 14996, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118325

ABSTRACT

The earliest atherosclerotic lesions preferentially develop in arterial regions experienced disturbed blood flow, which induces endothelial expression of pro-atherogenic genes and the subsequent endothelial dysfunction. Our previous study has demonstrated an up-regulation of DNA methyltransferase 1 (DNMT1) and a global hypermethylation in vascular endothelium subjected to disturbed flow. Here, we determined that DNMT1-specific inhibition in arterial wall ameliorates the disturbed flow-induced atherosclerosis through, at least in part, targeting cell cycle regulator cyclin A and connective tissue growth factor (CTGF). We identified the signaling pathways mediating the flow-induction of DNMT1. Inhibition of the mammalian target of rapamycin (mTOR) suppressed the DNMT1 up-regulation both in vitro and in vivo. Together, our results demonstrate that disturbed flow influences endothelial function and induces atherosclerosis in an mTOR/DNMT1-dependent manner. The conclusions obtained from this study might facilitate further evaluation of the epigenetic regulation of endothelial function during the pathological development of atherosclerosis and offer novel prevention and therapeutic targets of this disease.


Subject(s)
Atherosclerosis/pathology , Endothelium, Vascular/pathology , Epigenesis, Genetic/physiology , Hemorheology/physiology , Animals , Arteries/pathology , Arteries/physiopathology , Atherosclerosis/genetics , Atherosclerosis/physiopathology , Cattle , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Cyclin A/genetics , Cyclin A/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/physiology , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Promoter Regions, Genetic/genetics , TOR Serine-Threonine Kinases/metabolism
14.
Proc Natl Acad Sci U S A ; 114(31): 8271-8276, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716920

ABSTRACT

Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm2) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm2), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm2), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer of miR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern-specificity of SNARE activation and its contribution to the miRNA-mediated EC-SMC communication.


Subject(s)
Hyperplasia/pathology , MicroRNAs/metabolism , Muscle, Smooth, Vascular/cytology , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 3/metabolism , Animals , Endothelial Cells/physiology , Humans , Mice , Mice, Knockout , MicroRNAs/genetics , Myocytes, Smooth Muscle/physiology , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...