Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2309656121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408254

ABSTRACT

Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.


Subject(s)
Deafness , Hearing Loss , Mice , Animals , Hearing Loss/genetics , Hearing Loss/metabolism , Hair Cells, Auditory/physiology , Deafness/genetics , Hair Cells, Auditory, Inner/metabolism , Cadherins/metabolism , Exons/genetics
2.
Nat Commun ; 14(1): 1657, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964137

ABSTRACT

Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.


Subject(s)
Hair Cells, Auditory , Usher Syndromes , Humans , Hair Cells, Auditory/metabolism , Ankle , Mechanotransduction, Cellular , Carrier Proteins/metabolism , Stereocilia/metabolism , Usher Syndromes/genetics , Hair/metabolism
3.
Biochem J ; 479(12): 1393-1405, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35695292

ABSTRACT

In cochlea, deafness-related protein PDZD7 is an indispensable component of the ankle link complex, which is critical for the maturation of inner-ear hair cell for sound perception. Ankle links, connecting the different rows of cochlear stereocilia, are essential for the staircase-like development of stereocilia. However, the molecular mechanism of how PDZD7 governs stereociliary development remains unknown. Here, we reported a novel PDZD7-binding partner, FCHSD2, identified by yeast two-hybrid screening. FCHSD2 was reported to be expressed in hair cell, where it co-operated with CDC42 and N-WASP to regulate the formation of cell protrusion. The association between FCHSD2 and PDZD7 was further confirmed in COS-7 cells. More importantly, we solved the complex structure of FCHSD2 tail with PDZD7 PDZ3 domain at 2.0 Šresolution. The crystal structure shows that PDZD7 PDZ3 adopts a typical PDZ domain topology, comprising five ß strands and two α helixes. The PDZ-binding motif of FCHSD2 tail stretches through the αB/ßB groove of PDZD7 PDZ3. Our study not only uncovers the interaction between FCHSD2 tail and PDZD7 PDZ3 at the atomic level, but also provides clues of connecting the ankle link complex with cytoskeleton dynamics for exploiting the molecular mechanism of stereociliary development.


Subject(s)
Carrier Proteins , Deafness , Carrier Proteins/metabolism , Deafness/genetics , Hair Cells, Auditory/metabolism , Humans , Membrane Proteins/metabolism , PDZ Domains , Stereocilia/chemistry , Stereocilia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...