Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
World J Oncol ; 15(4): 598-611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993244

ABSTRACT

Background: Impact of radiotherapy (RT) for esophageal cancer (EC) patients on the development of secondary head and neck cancer (SHNC) remains equivocal. The objective of this study was to investigate the link between definitive RT used for EC treatment and subsequent SHNC. Methods: This study was conducted using the Surveillance, Epidemiology, and End Results (SEER) database to collect the data of primary EC patients. Fine-Gray competing risk regression and standardized incidence ratio (SIR) and propensity score matching (PSM) method were used to match SHNC patients with only primary head and neck cancer (HNC) patients. Overall survival (OS) rates were applied by Kaplan-Meier analysis. Results: In total, 14,158 EC patients from the SEER database were included, of which 9,239 patients (65.3%) received RT and 4,919 patients (34.7%) received no radiation therapy (NRT). After a 12-month latency period, 110 patients (1.2%) in the RT group and 36 patients (0.7%) in the NRT group experienced the development of SHNC. In individuals with primary EC, there was an increased incidence of SHNC compared to the general US population (SIR = 5.95, 95% confidence interval (CI): 5.15 - 6.84). Specifically, the SIR for SHNC was 8.04 (95% CI: 6.78 - 9.47) in the RT group and 3.51 (95% CI: 2.64 - 4.58) in the NRT group. Patients who developed SHNC after RT exhibited significantly lower OS compared to those after NRT. Following PSM, the OS of patients who developed SHNC after RT remained significantly lower than that of matched patients with only primary HNC. Conclusion: An association was discovered between RT for EC and increased long-term risk of SHNC. This work enables radiation oncologists to implement mitigation strategies to reduce the long-term risk of SHNC in patients who have received RT following primary EC.

2.
ERJ Open Res ; 10(4)2024 Jul.
Article in English | MEDLINE | ID: mdl-38957167

ABSTRACT

Background: Few studies have compared the associations between long-term exposures to particulate matters (aerodynamic diameter ≤1, ≤2.5 and ≤10 µm: PM1, PM2.5 and PM10, respectively) and asthma and asthma-related respiratory symptoms. The objective of the present study was to compare the strength of the aforementioned associations in middle-aged and elderly adults. Methods: We calculated the mean 722-day personal exposure estimates of PM1, PM2.5 and PM10 at 1 km×1 km spatial resolution between 2013 and 2019 at individual levels from China High Air Pollutants (CHAP) datasets. Using logistic regression models, we presented the associations as odds ratios and 95% confidence intervals, for each interquartile range (IQR) increase in PM1/PM2.5/PM10 concentration. Asthma denoted a self-reported history of physician-diagnosed asthma or wheezing in the preceding 12 months. Results: We included 7371 participants in COPD surveillance from Guangdong, China. Each IQR increase in PM1, PM2.5 and PM10 was associated with a greater odds (OR (95% CI)) of asthma (PM1: 1.22 (1.02-1.45); PM2.5: 1.24 (1.04-1.48); PM10: 1.30 (1.07-1.57)), wheeze (PM1: 1.27 (1.11-1.44); PM2.5: 1.30 (1.14-1.48); PM10: 1.34 (1.17-1.55)), persistent cough (PM1: 1.33 (1.06-1.66); PM2.5: 1.36 (1.09-1.71); PM10: 1.31 (1.02-1.68)) and dyspnoea (PM1: 2.10 (1.84-2.41); PM2.5: 2.17 (1.90-2.48); PM10: 2.29 (1.96-2.66)). Sensitivity analysis results were robust after excluding individuals with a family history of allergy. Associations of PM1, PM2.5 and PM10 with asthma and asthma-related respiratory symptoms were slightly stronger in males. Conclusion: Long-term exposure to PM is associated with increased risks of asthma and asthma-related respiratory symptoms.

3.
Sci Rep ; 14(1): 14111, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898092

ABSTRACT

Legumin A is a seed storage protein that provides nutrients for seed germination. The purpose of this study was to describe the structure and expression pattern of the EuLEGA gene in Eucommia ulmoides Oliver (E. ulmoides) and to infer its functional role. The 1287 bp coding sequence of the EuLEGA CDS of the EuLEGA gene, encoding a protein containing 428 amino acid residues, was cloned. The structure predicted that the protein belonged to the RmlC (deoxythymidine diphosphates, dTDP)-4-dehydrorhamnose 3,5-epimerase)-like cupin conserved domain family, which contains both RmlC, a key enzyme for the synthesis of rhamnose and legumin A. The overexpression (OE) vector of the EuLEGA gene was constructed and genetically transformed into tobacco and E. ulmoides; the RNA interference (RNAi) vector of the EuLEGA gene was constructed and genetically transformed into E. ulmoides; and the contents of legumin A and rhamnose were detected. The results showed that the EuLEGA gene could significantly increase the content of legumin A in transgenic tobacco leaves and transgenic E. ulmoides regenerative buds, and the OE of this gene in E. ulmoides could promote an increase in rhamnose content. RNAi caused a significant decrease in the legumin A content in the regenerated buds of E. ulmoides. These was a significant increase in legumin A in the transgenic tobacco seeds, and these results indicate that the expression of the EuLEGA gene is closely related to the accumulation of legumin A. Subcellular localization studies revealed that EuLEGA is localized to the cytoplasm with the vacuolar membrane. Analysis of the EuLEGA gene expression data revealed that the expression level of the EuLEGA gene in the samaras was significantly greater than that in the leaves and stems. In addition, the study also demonstrated that GA3 can upregulate the expression levels of the EuLEGA gene, while ABA and MeJA can downregulate its expression levels.


Subject(s)
Cloning, Molecular , Eucommiaceae , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Eucommiaceae/genetics , Eucommiaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Legumins/genetics , Legumins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Rhamnose/metabolism , RNA Interference
4.
Zool Res ; 45(3): 586-600, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766743

ABSTRACT

The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.


Subject(s)
Gene Expression Profiling , Placenta , Placentation , Transcriptome , Animals , Cattle/genetics , Female , Pregnancy , Placenta/metabolism , Trophoblasts/metabolism
5.
Gene ; 927: 148619, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821325

ABSTRACT

Black shank disease is the main disease affecting tobacco crops worldwide, and the main impacted by the disease are the stem base and root. At present, transgenic technology is an effective method to improve plant disease resistance through transgenic technology. In this study, the EuCHIT73.88 gene was cloned from Eucommia ulmoides Oliver (E. ulmoides) by using RT-PCR. The full length of the gene was 897 bp, encoding 298 amino acid residues. An overexpression vector of from the EuCHIT73.88 gene driven by the 35S promoter was constructed and transferred into tobacco plants via transgenic technology. After inoculation with the black shank pathogen, the number of visible lesions on the stems and leaves of the transgenic tobacco variety EuCHIT73.88 was significantly shorter than that on the stems and leaves of the of wild type (WT) and empty vector (EV) plants, and the lesion area was significantly smaller than on the stems and leaves of the WT and EV plants. With increasing inoculation time, introduction of the WT and EV vectors was obviously lethal, whereas transgenic tobacco only exhibited wilted characteristics, and the stems were black, which indicated that the EuCHIT73.88 gene could improve the resistance of tobacco to black shank disease. Furthermore, the activity of protective enzymes and the gene expression of resistance-related proteins were measured. The results showed that compared with those of the WT and EV plants, the CAT and POD activities of the TP tobacco plants were greater, peaking at 72 h at concentrations of 446.87 U/g and 4562.24 U/g, which were 1.63 and 1.61 times greater than those of the WT and EV plants, respectively. This indicated that CAT and POD may be involved in the process of disease resistance of in the transgenic plants. The MDA content of the transgenic tobacco plants was significantly lower than that of the WT and EV plants with increasing EuCHIT73.88 expression, thus indicating that the overexpression of the transgenic EuCHIT73.88 gene could alleviate the levels of lipid peroxidation and reduce the damage to plant cell membranes. The expression of disease-related protein genes (PR2, PR5, PR1a, PDF1.2 and MLP423) was significantly greater in the EuCHIT73.88 ransgenic tobacco than in the WT and EV-transgenic tobacco. and these findings consistently showed that EuCHIT73.88 could improve the resistance to black shank.

6.
Sci Rep ; 14(1): 11587, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773239

ABSTRACT

Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.


Subject(s)
Amidohydrolases , Cloning, Molecular , Eucommiaceae , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Eucommiaceae/genetics , Eucommiaceae/metabolism , Plants, Genetically Modified/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Nicotiana/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phylogeny , Amino Acid Sequence , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124305, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38657331

ABSTRACT

A new fluorescent sensor for the determination of lemon yellow was developed based on nitrogen-doped carbon quantum dots (N-CQDs), which were prepared via a hydrothermal method with dried pomelo peel and L-tyrosine. The N-CQDs exhibited the blue fluorescence with a quantum yield of 28 %. The sensing principle of N-CQDs was quenched by lemon yellow via static quenching. The potential interfering substances showed no influence on the detection of lemon yellow. The limit of detection was 0.023 mg/L and lower than that of national standard. Furthermore, the synthesized N-CQDs have been successfully applied to the measurement of lemon yellow in real samples. Hence, the N-CQDs would be a promising sensor in food analysis.


Subject(s)
Carbon , Nitrogen , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Carbon/chemistry , Nitrogen/chemistry , Carbonated Beverages/analysis , Green Chemistry Technology/methods , Limit of Detection , Citrus/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis
8.
World J Stem Cells ; 16(2): 191-206, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38455098

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) is a common orthopedic condition with an uncertain etiology, possibly involving genetics and biomechanics. Factors like changes in chondrocyte microenvironment, oxidative stress, inflammation, and immune responses affect KOA development. Early-stage treatment options primarily target symptom relief. Mesenchymal stem cells (MSCs) show promise for treatment, despite challenges. Recent research highlights microRNAs (miRNAs) within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression. This suggests exosomes (Exos) as a promising avenue for future treatment. While these findings emphasize the need for effective KOA progression management, further safety and efficacy validation for Exos is essential. AIM: To explore miR-29a's role in KOA, we'll create miR-29a-loaded vesicles, testing for early treatment in rat models. METHODS: Extraction of bone marrow MSC-derived extracellular vesicles, preparation of engineered vesicles loaded with miR-29a using ultrasonication, and identification using quantitative reverse transcription polymerase chain reaction; after establishing a rat model of KOA, rats were randomly divided into three groups: Blank control group injected with saline, normal extracellular vesicle group injected with normal extracellular vesicle suspension, and engineered extracellular vesicle group injected with engineered extracellular vesicle suspension. The three groups were subjected to general behavioral observation analysis, imaging evaluation, gross histological observation evaluation, histological detection, and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis. RESULTS: General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain, gait, joint mobility, and swelling compared to the blank control group. Additionally, the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group. Imaging examination results showed that the blank control group had the fastest progression of arthritis, the normal extracellular vesicle group had a relatively slower progression, and the engineered extracellular vesicle group had the slowest progression. Gross histological observation results showed that the blank control group had the most obvious signs of arthritis, the normal extracellular vesicle group showed signs of arthritis, and the engineered extracellular vesicle group showed no significant signs of arthritis. Using the Pelletier gross score evaluation, the engineered extracellular vesicle group had the slowest progression of arthritis. Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group, and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition. Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group. Compared to the normal extracellular vesicle group, the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells. CONCLUSION: Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability, thereby protecting articular cartilage, and slowing the progression of KOA.

9.
Opt Lett ; 49(5): 1305-1308, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426999

ABSTRACT

Temperature characteristics of GaN-based laser diodes are investigated. It is noted that the characteristic temperature of the threshold current (T0) decreases with decreasing lasing wavelength for GaN-based LDs. The performance deteriorates seriously for UV LDs at high temperature. It is ascribed to the increase of carriers escaping from quantum wells due to the lower potential barrier height. In this Letter, AlGaN is used as the barrier layer in UV LDs instead of GaN to improve the temperature characteristic of the threshold current and slope efficiency by increasing the potential barrier height of quantum wells. Based on this structure, a high output power of 4.6 W is obtained at the injection current of 3.8 A; its lasing wavelength is 386.8 nm.

11.
Clin Ther ; 46(3): 252-257, 2024 03.
Article in English | MEDLINE | ID: mdl-38368167

ABSTRACT

PURPOSE: During the induction of general anesthesia, opioids and endotracheal intubation may cause coughing. This study aimed to investigate the safety and effectiveness of an optimized drug induction scheme for general anesthesia to prevent coughing in patients. METHODS: A total of 220 patients aged 18 to 65 years who underwent surgery under general anesthesia with endotracheal intubation were randomly assigned to two groups, each with 110 patients. One group was administered a divided sufentanil bolus (group A) and the other with a single sufentanil bolus (group B). Anesthesia induction was performed according to the drug induction scheme of 1st, 2nd, and 3rd minutes. The primary outcome was a coughing episode associated with the administration of opioids during anesthesia induction. We also recorded the pain associated with drug injection, hemodynamics, and blood oxygen saturation during the induction of anesthesia. FINDINGS: All patients were included in the final statistical analysis. Compared with group B, the incidence of opioid induced cough (OIC) was significantly higher in group A (9.1% vs. 0, P = 0.001). There was no cough reaction of tracheal intubation in either group. There was no severe pain due to propofol and rocuronium injection in either group (P > 0.05). The mean arterial pressure (MAP), heart rate (HR), and peripheral oxygen saturation (SpO2) values were within the normal range at each time point during the induction period in both groups. IMPLICATIONS: According to the optimized 1st, 2nd, and 3rd minutes anesthesia induction regimen, with a single final intravenous bolus of sufentanil after the diluted rocuronium bromide administration, no sufentanil and tracheal intubation induced coughing reactions were observed. TRIAL REGISTRATION: The study protocol was registered in the Chinese Clinical Trial Registry (ChiCTR2200062749, http://www.chictr.org.cn/showproj.aspx?proj=175018) on August 17, 2022.


Subject(s)
Anesthesia, General , Cough , Humans , Analgesics, Opioid/adverse effects , Anesthesia, General/adverse effects , Anesthesia, General/methods , Cough/chemically induced , Cough/prevention & control , Pain/drug therapy , Prospective Studies , Sufentanil/adverse effects , Adolescent , Young Adult , Adult , Middle Aged , Aged
12.
Tuberculosis (Edinb) ; 146: 102496, 2024 May.
Article in English | MEDLINE | ID: mdl-38401266

ABSTRACT

BACKGROUND: Tuberculosis (TB) is not only related to infection but also involves immune factors. This study explores the changes in T-lymphocyte subsets in children with TB who are human immunodeficiency virus (HIV)-negative and examines their relationship using chest computed tomography (CT) scans. Additionally, the study identifies risk factors for severe TB (STB) in children and establishes relevant risk prediction models. METHODS: We recruited 235 participants between 2018 and 2022, comprising 176 paediatric patients with TB who were HIV-negative and 59 age-matched children with bacterial community-acquired pneumonia (CAP). We quantitatively analysed and compared T-lymphocyte subsets between the two groups and among different types of TB infection. Both univariate and multivariate analyses of clinical and laboratory characteristics were conducted to identify independent risk factors for STB in children and to establish a risk prediction model. RESULTS: The absolute counts of CD3, CD4 and CD8 T-cells in children with TB infection decreased significantly compared with bacterial CAP. The percentage of CD8 T-cells increased, whereas the percentage of CD4 T-cells did not change significantly. The absolute count of CD3, CD4 and CD8 T-cells in extrapulmonary TB (EPTB) was significantly higher than in extra-respiratory TB, with unchanged subset percentages. According to chest CT lesion classification, CD4 T-cell counts decreased significantly in S3 compared with S1 or S2, with no significant change in CD3 and CD8 T-cell counts and percentages. No significant differences were observed in lymphocyte subset counts and percentages between S1 and S2. Univariate analyses indicated that factors such as age, symptom duration, white blood cell count, platelet count, neutrophil-to-lymphocyte ratio (NLR), erythrocyte sedimentation rate, prealbumin level, albumin level, globulin level, albumin/globulin (A/G) ratio, high-sensitivity C-reactive protein (Hs-CRP) level and CD4 and CD8 T-cell counts are associated with STB. Multivariate logistic regression analysis revealed that age, Hs-CRP level, NLR, symptom duration and A/G ratio are independent risk factors for STB in children. Increased age, Hs-CRP levels and NLR, along with decreased A/G, correlate with increased susceptibility to STB. A nomogram model, based on these independent risk factors, demonstrated an area under the receiver operating characteristics curve of 0.867 (95% CI: 0.813-0.921). Internal verification confirmed the model's accuracy, with the calibration curve approaching the ideal and the Hosmer-Lemeshow goodness-of-fit test showing consistent results (χ2 = 12.212, p = 0.142). CONCLUSION: In paediatric patients with TB, the absolute counts of all lymphocyte subsets were considerably reduced compared with those in patients with bacterial CAP. Clinicians should consider the possibility of EPTB infection in addition to respiratory infections in children with TB who have higher CD3, CD4 and CD8 T-cell counts than the ERTB group. Furthermore, CD4 T-cell counts correlated closely with the severity of chest CT lesions. Age, symptom duration, A/G ratio, Hs-CRP level and NLR were established as independent risk factors for STB. The nomogram model, based on these factors, offers effective discrimination and calibration in predicting STB in children.


Subject(s)
Globulins , HIV Infections , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Child , C-Reactive Protein , T-Lymphocyte Subsets , Tuberculosis/diagnosis , Risk Factors , Lymphocyte Subsets , Lymphocyte Count
13.
J Dent Sci ; 19(1): 648-651, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303838

ABSTRACT

Traditionally, patients are positioned in the prone position to access the donor site during the posterior iliac bone graft harvesting procedure. However, this well-established method is associated with complications such as pressure injuries, displacement of the endotracheal tube and intravenous catheter, and blindness. Moreover, the process of turning patients 180° between the supine and prone positions is both laborious and time consuming. However, no updates have been made in the approaches published in the literature to counteract these problems. Therefore, to overcome these challenges and improve patient outcomes, we proposed a pivotal modification: change prone position to the lateral decubitus position. This approach allowed us to effectively avoid the aforementioned complications. In addition, this modification offered significant advantages, including ease of implementation and timesaving benefits. The article presented results of the modification and a comprehensive evaluation of clinical and anesthetic considerations comparing the two methods.

14.
World J Pediatr ; 20(1): 11-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064012

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is the leading global cause of respiratory infections and is responsible for about 3 million hospitalizations and more than 100,000 deaths annually in children younger than 5 years, representing a major global healthcare burden. There is a great unmet need for new agents and universal strategies to prevent RSV infections in early life. A multidisciplinary consensus development group comprising experts in epidemiology, infectious diseases, respiratory medicine, and methodology aims to develop the current consensus to address clinical issues of RSV infections in children. DATA SOURCES: The evidence searches and reviews were conducted using electronic databases, including PubMed, Embase, Web of Science, and the Cochrane Library, using variations in terms for "respiratory syncytial virus", "RSV", "lower respiratory tract infection", "bronchiolitis", "acute", "viral pneumonia", "neonatal", "infant" "children", and "pediatric". RESULTS: Evidence-based recommendations regarding diagnosis, treatment, and prevention were proposed with a high degree of consensus. Although supportive care remains the cornerstone for the management of RSV infections, new monoclonal antibodies, vaccines, drug therapies, and viral surveillance techniques are being rolled out. CONCLUSIONS: This consensus, based on international and national scientific evidence, reinforces the current recommendations and integrates the recent advances for optimal care and prevention of RSV infections. Further improvements in the management of RSV infections will require generating the highest quality of evidence through rigorously designed studies that possess little bias and sufficient capacity to identify clinically meaningful end points.


Subject(s)
Bronchiolitis , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Child , Humans , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/prevention & control , Consensus , Respiratory Syncytial Viruses , Respiratory Tract Infections/epidemiology , Hospitalization
15.
Bioresour Technol ; 394: 130268, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154737

ABSTRACT

The complexity of biomass components leads to significant variations in the performance of biomass-based carbon dots (CDs). To shed light on this matter, this study presents a comparative analysis of the fluorescence properties of CDs using pure cellulose, lignin, and protein as models. Three CDs showed different fluorescent properties, resulting from the structure difference and carbonization behavior in the hydrothermal. The relatively gentle thermal degradation of proteins allows the macromolecular structure of amino acids to be preserved. This preservation results in a more regular lattice structure, a larger sp2 domain size, and N-doping, which contribute to the highest quantum yield (QY) of 8.7% of the CDs. In contrast, cellulose undergoes more severe thermal degradation with large amounts of small molecules generated, resulting in the CDs with fewer surface defects, more irregular lattice structures, and lower QY. These results provide a guideline for the design of carbon dots from different biomass.


Subject(s)
Cellulose , Lignin , Cellulose/chemistry , Carbon/chemistry , Biomass , Fluorescence , Coloring Agents , Fluorescent Dyes/chemistry
16.
Plant Mol Biol ; 113(4-5): 205-217, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37973765

ABSTRACT

The generation of adventitious roots (ARs) is the key to the success of cuttings. The appropriate environment for AR differentiation in tea plants is acidic. However, the mechanism is unclear. In this study, pH 4.5 was suitable condition for the differentiation of AR in tea plants. At the base of cuttings, the root primordia differentiated ARs more rapidly at pH 4.5 than pH 7.0, and nine AR differentiation-related genes were found to be differentially expressed in 30 days, the result was also validated by qRT-PCR. The promoter regions of these genes contained auxin and brassinosteroid response elements. The expression levels of several genes which were involved in auxin and brassinosteroid synthesis as well as signaling at pH 4.5 compared to pH 7.0 occurred differential expression. Brassinolide (BL) and indole-3-acetic acid (IAA) could affect the differentiation of ARs under pH 4.5 and pH 7.0. By qRT-PCR analysis of genes during ARs generation, BL and IAA inhibited and promoted the expression of CsIAA14 gene, respectively, to regulate auxin signal transduction. Meanwhile, the expression levels of CsKNAT4, CsNAC2, CsNAC100, CsWRKY30 and CsLBD18 genes were up-regulated upon auxin treatment and were positively correlated with ARs differentiation.This study showed that pH 4.5 was the most suitable environment for the root primordia differentiation of AR in tea plant. Proper acidic pH conditions promoted auxin synthesis and signal transduction. The auxin initiated the expression of AR differentiation-related genes, and promoted its differentiated. BL was involved in ARs formation and elongation by regulating auxin signal transduction.


Subject(s)
Brassinosteroids , Camellia sinensis , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Gene Expression Profiling , Tea/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
17.
Nutr Cancer ; 75(10): 1934-1944, 2023.
Article in English | MEDLINE | ID: mdl-37873764

ABSTRACT

BACKGROUND: Cancer is one of the leading causes of death. The current work aims to investigate the association between C-reactive protein-triglyceride glucose index (CTI) and the risk of incident cancer mortality and to evaluate the usefulness of CTI to refine the risk stratification of cancer mortality. METHODS: The study enrolled 19,957 subjects from American National Health and Nutrition Examination Survey. CTI was defined as 0.412*Ln(CRP) + ln[T.G. (mg/dL) × FPG (mg/dL)/2]. Cox regression was performed to investigate the association. RESULTS: During a follow-up of 215417.52 person-years, 736 subjects died due to malignant tumors, and the incidence of cancer mortality was 3.42 per 1,000 person-years. Kaplan-Meier curve revealed that the fourth quartile group had the lowest cancer mortality-free rate (Log-Rank p < 0.001). After full adjustment, each SD increase of CTI cast a 32.7% additional risk of incident cancer mortality. Furthermore, cancer mortality risk elevated proportionally with the increase of CTI. Finally, ROC and reclassification analyses supported the usefulness of CTI in improving the risk stratification of incident cancer mortality. CONCLUSION: The study revealed a significant association between CTI and cancer mortality risk, suggesting the value of CTI in improving the risk stratification of incident cancer mortality. KEY MESAGESC-reactive protein-triglyceride glucose index (CTI) is positively associated with cancer mortality risk in the general population.The association was linear in the whole range of CTI.CTI could improve the risk prediction of cancer mortality in the general population.


Subject(s)
C-Reactive Protein , Neoplasms , Humans , Glucose , Triglycerides , Nutrition Surveys , Blood Glucose , Risk Factors , Biomarkers
18.
J Inflamm Res ; 16: 4763-4776, 2023.
Article in English | MEDLINE | ID: mdl-37881652

ABSTRACT

Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.

19.
Biomed Pharmacother ; 168: 115632, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806094

ABSTRACT

Spinal Cord Injury (SCI) is a devastating neurological disorder comprising primary mechanical injury and secondary inflammatory response-mediated injury for which an effective treatment is still unavailable. It is well known that secondary inflammatory responses are a significant cause of difficulties in neurological recovery. An immune imbalance between M1/M2 macrophages at the sites of injury is involved in developing and progressing the secondary inflammatory response. Recently, Mesenchymal Stem Cells (MSCs) have shown significant therapeutic potential in tissue engineering and regenerative medicine due to their potential multidirectional differentiation and immunomodulatory properties. Accumulating evidence shows that MSCs can regulate the balance of M1/M2 macrophage polarization, suppress downstream inflammatory responses, facilitate tissue repair and regeneration, and improve the prognosis of SCI. This article briefly overviews the impact of macrophages and MSCs on SCI and repair. It discusses the mechanisms by which MSCs regulate macrophage plasticity, including paracrine action, release of exosomes and apoptotic bodies, and metabolic reprogramming. Additionally, the article summarizes the relevant signaling pathways of MSCs that regulate macrophage polarization.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Spinal Cord Injuries , Humans , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Spinal Cord Injuries/drug therapy , Cell Differentiation , Exosomes/metabolism , Spinal Cord/metabolism
20.
Mol Brain ; 16(1): 54, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37370111

ABSTRACT

Itch is a complex aversive sensory and emotional experience. As a most upsetting symptom in many dermatological and systemic diseases, it lacks efficient treatments. The lateral habenula nucleus (LHb) encodes negative emotions in the epithalamus and has been implicated in pain and analgesia. Nevertheless, the role of the lateral habenula nucleus in the pruritic sensation and emotion remains elusive. Here we defined the crucial role of glutamatergic neurons within the lateral habenula nucleus (GluLHb) in itch modulation in mice. We established histamine-dependent and histamine-independent models of acute pruritus, as well as the acetone-ether-water (AEW) model of chronic pruritus. We first assessed the effects of pruritogen injection on neural activation in both medial and lateral divisions of LHb in vitro. We then demonstrated that the population activity of GluLHb neurons was increased during the acute itch and chronic itch-induced scratching behaviors in vivo. In addition, electrophysiological data showed that the excitability of GluLHb neurons was enhanced by chronic itch. Chemogenetic suppression of GluLHb neurons disrupted both acute and chronic itch-evoked scratching behaviors. Furthermore, itch-induced conditioned place aversion (CPA) was abolished by GluLHb neuronal inhibition. Finally, we dissected the LHb upstream brain regions. Together, these findings reveal the involvement of LHb in processing both the sensational and emotional components of pruritus and may shed new insights into itch therapy.


Subject(s)
Habenula , Mice , Animals , Histamine , Emotions , Sensation , Pruritus
SELECTION OF CITATIONS
SEARCH DETAIL
...