Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 68(3): 305-313, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36690576

ABSTRACT

Enhanced silicate weathering induced by the uplift of the Himalayan-Tibetan Plateau (HTP) has been considered as the major cause of pCO2 decline and Cenozoic cooling. However, this hypothesis remains to be validated, largely due to the lack of a reliable reconstruction of the HTP weathering flux. Here, we present a 37-million-year record of the difference in the seawater radiogenic neodymium isotopic composition (ΔεNd) of Ocean Drilling Program (ODP) sites and Fe-Mn crusts between the northern and central Indian Ocean, which indicates the contribution of regional weathering input from the South Asian continent to the Indian Ocean. The results show a long-term increase in ΔεNd and thus provide the first critical evidence of enhanced South Asian weathering input since the late Eocene. The evolution coincided well with major pulses of surface uplift in the HTP and global climatic transitions. Our foraminiferal εNd record suggests that tectonic uplift and silicate weathering in South Asia, especially in the Himalayas, might have played a significant role in the late Cenozoic cooling.

2.
Innovation (Camb) ; 3(6): 100338, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36353675

ABSTRACT

The widely accepted "Milankovitch theory" explains insolation-induced waxing and waning of the ice sheets and their effect on the global climate on orbital timescales. In the past half century, however, the theory has often come under scrutiny, especially regarding its "100-ka problem." Another drawback, but the one that has received less attention, is the "monsoon problem," which pertains to the exclusion of monsoon dynamics in classic Milankovitch theory even though the monsoon prevails over the vast low-latitude (∼30° N to ∼30° S) region that covers half of the Earth's surface and receives the bulk of solar radiation. In this review, we discuss the major issues with the current form of Milankovitch theory and the progress made at the research forefront. We suggest shifting the emphasis from the ultimate outcomes of the ice volume to the causal relationship between changes in northern high-latitude insolation and ice age termination events (or ice sheet melting rate) to help reconcile the classic "100-ka problem." We discuss the discrepancies associated with the characterization of monsoon dynamics, particularly the so-called "sea-land precession-phase paradox" and the "Chinese 100-ka problem." We suggest that many of these discrepancies are superficial and can be resolved by applying a holistic "monsoon system science" approach. Finally, we propose blending the conventional Kutzbach orbital monsoon hypothesis, which calls for summer insolation forcing of monsoons, with Milankovitch theory to formulate a combined "Milankovitch-Kutzbach hypothesis" that can potentially explain the dual nature of orbital hydrodynamics of the ice sheet and monsoon systems, as well as their interplays and respective relationships with the northern high-latitude insolation and inter-tropical insolation differential.

3.
PLoS One ; 12(10): e0186153, 2017.
Article in English | MEDLINE | ID: mdl-29023505

ABSTRACT

The Late Cenozoic East Asian winter monsoon (EAWM) enhancement has been attributed to several factors, such as uplift of the Tibetan Plateau, retreat of the Paratethys Sea, and global cooling related to polar ice volume increment. However, the fundamental forcing factors remain enigmatic due to the absence of long and continuous climate records and sensitive indicators. Here we reanalyzed the published grain-size record of Sikouzi fine sediments in the western Chinese Loess Plateau through end-member (EM) modeling. The results indicate that EM 2 with grain-size peaks between 10-100 µm decreased in content from 20.1 to 17 Ma and stepwise increased from 17 to 0.07 Ma during the following six stages (17-15 Ma, 15-12 Ma, 12-8 Ma, 8-6 Ma, 6-4 Ma and 4-0 Ma). Such varying trends can be successively correlated in seven stages with the integrated benthic δ18O record, implying that global warming weakened the EAWM from 20.1 to 17 Ma and global cooling has stepwise strengthened the EAWM since 17 Ma. Therefore, we conclude that global temperature change played a major role on the evolution of EAWM during the Neogene period. By contrast, Late Cenozoic palaeogeographic reorganization caused by uplift of the Tibetan Plateau and retreat of the Paratethys Sea contributed less to the evolutionary evolution of EAWM. Spectral analysis of the EM 2 data first provided direct evidence of orbitally influenced deposition in the study area and thus the EAWM variations during the Neogene period. The 100-kyr period became weak since ~10 Ma, possibly due to the decrease in sensitivity of a more stable, continental-scale ice sheet in Antarctica to local insolation forcing, deserving further investigation.


Subject(s)
Geologic Sediments/analysis , Soil Pollutants/analysis , Biological Evolution , China , Global Warming , Models, Theoretical , Particle Size , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...