Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Virus Res ; : 199412, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838820

ABSTRACT

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.

2.
Nat Commun ; 15(1): 4607, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816407

ABSTRACT

Type II topoisomerases are ubiquitous enzymes that play a pivotal role in modulating the topological configuration of double-stranded DNA. These topoisomerases are required for DNA metabolism and have been extensively studied in both prokaryotic and eukaryotic organisms. However, our understanding of virus-encoded type II topoisomerases remains limited. One intriguing example is the African swine fever virus, which stands as the sole mammalian-infecting virus encoding a type II topoisomerase. In this work, we use several approaches including cryo-EM, X-ray crystallography, and biochemical assays to investigate the structure and function of the African swine fever virus type II topoisomerase, pP1192R. We determine the structures of pP1192R in different conformational states and confirm its enzymatic activity in vitro. Collectively, our results illustrate the basic mechanisms of viral type II topoisomerases, increasing our understanding of these enzymes and presenting a potential avenue for intervention strategies to mitigate the impact of the African swine fever virus.


Subject(s)
African Swine Fever Virus , Cryoelectron Microscopy , DNA Topoisomerases, Type II , African Swine Fever Virus/enzymology , African Swine Fever Virus/genetics , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/chemistry , Animals , Crystallography, X-Ray , Swine , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Models, Molecular , Protein Conformation , African Swine Fever/virology
3.
Int J Biol Macromol ; 268(Pt 1): 131695, 2024 May.
Article in English | MEDLINE | ID: mdl-38642684

ABSTRACT

Due to the absence of effective vaccine and treatment, African swine fever virus (ASFV) control is entirely dependent on accurate and early diagnosis, along with culling of infected pigs. The B646L/p72 is the major capsid protein of ASFV and is an important target for developing a diagnostic assays and vaccines. Herein, we generated a monoclonal antibody (mAb) (designated as 2F11) against the trimeric p72 protein, and a blocking ELISA (bELISA) was established for the detection of both genotype I and II ASFV antibodies. To evaluate the performance of the diagnostic test, a total of 506 porcine serum samples were tested. The average value of percent of inhibition (PI) of 133 negative pig serum was 8.4 % with standard deviation (SD) 6.5 %. Accordingly, the cut-off value of the newly established method was set at 28 % (mean + 3SD). Similarly, a receiver operating characteristic (ROC) was applied to determine the cut off value and the p72-bELISA exhibited a sensitivity of 100 % and a specificity of 99.33 % when the detection threshold was set at 28 %. The bELISA was also able to specifically recognize anti-ASFV sera without cross-reacting with other positive serums for other major swine pathogens. Moreover, by designing a series of overlapped p72 truncated proteins, the linear B cell epitope recognized by 2F11 mAb was defined to be 283NSHNIQ288. Amino acid sequence comparison revealed that the amino acid sequence 283NSHNIQ288 is highly conserved between different ASFV isolates. Our findings indicate that the newly established mAb based blocking ELISA may have a great potential in improving the detection of ASFV antibodies and provides solid foundation for further studies.


Subject(s)
African Swine Fever Virus , Antibodies, Monoclonal , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte , Animals , African Swine Fever Virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Epitopes, B-Lymphocyte/immunology , Capsid Proteins/immunology , African Swine Fever/immunology , African Swine Fever/diagnosis , African Swine Fever/virology , Amino Acid Sequence , Epitope Mapping
4.
J Diabetes Complications ; 38(5): 108744, 2024 05.
Article in English | MEDLINE | ID: mdl-38613990

ABSTRACT

INTRODUCTION: The prevalence of diabetes mellitus is increasing year by year globally, and diabetic cardiomyopathy (DCM), as the most common complication of type 2 diabetes mellitus, seriously affects the prognosis of patients. Trimetazidine (TMZ), as a drug affecting myocardial energy metabolism, mainly reduces the oxidation rate of ß-oxidation by inhibiting 3-ketoacyl-CoA thiolase (3-KAT), a key enzyme in ß-oxidation of free fatty acid (FFA), so that the energy metabolism substrate of cardiomyocytes preferentially selects glucose rather than fatty acids, increases the content of intracellular adenosine triphosphate (ATP), enhances the contractile function of cardiomyocytes, and improves the state of cellular ischemia and hypoxia. Previous studies have shown that TMZ is closely related to the activation and induction of apoptosis of the MAPK pathway and AMPK pathway, and plays a role in the treatment of diabetic cardiomyopathy, but the specific mechanism is still unclear. OBJECTIVE: This study aims to investigate the impact of TMZ on myocardial damage in mice exhibiting diabetic cardiomyopathy (DCM), and to furnish a laboratory foundation for the clinical treatment of diabetic cardiomyopathy. METHOD: Male db/db mice (6 weeks old, n = 21) and male wild-type (wt) (6 weeks old, n = 20) mice were selected for the study. The wt mice were randomly assigned to the wt group (n = 10) and wt + TMZ group (n = 10), while the remaining db/db mice were randomly allocated to the db/db group (n = 11) and db/db + TMZ group (n = 10). Following 8 weeks of feeding, the wt + TMZ group and db/db + TMZ group received TMZ via gavage, whereas the remaining groups were administered physiological saline. Periodic measurements of blood glucose, blood lipids, and myocardial enzymes were conducted in mice, with samples obtained after the 12th week for subsequent biochemical analysis, myocardial pathology assessment, immunohistochemistry, western blot analysis, and TUNEL staining (TdT-mediated dUTP Nick-End Labeling). RESULT: GLU, TC, TG, LDL-C, and CK-MB levels were significantly higher in db/db mice compared to wt mice (GLU: M ± SD wt 5.94 ± 0.37, db/db 17.63 ± 0.89, p < 0.05, ES = 0.991; TC: M ± SD wt 3.01 ± 0.32, db/db 6.97 ± 0.36, p < 0.05, ES = 0.972; TG: M ± SD wt 0.58 ± 0.2, db/db 1.75 ± 0.14, p < 0.05, ES = 0.920; LDL-C: M ± SD wt 1.59 ± 0.12, db/db 3.87 ± 0.14, p < 0.05, ES = 0.989; CK-MB: M ± SD wt 0.12 ± 0.01, db/db 0.31 ± 0.04, p < 0.05, ES = 0.928). HDL-C levels were significantly lower in db/db mice (M ± SD wt 1.89 ± 0.08, db/db 0.64 ± 0.09, p < 0.05, ES = 0.963). Histopathological analysis confirmed myocardial damage in db/db mice. Treatment with TMZ reduced GLU, TC, TG, LDL-C, and CK-MB levels (p < 0.05, ES > 0.9) and increased HDL-C levels compared to untreated db/db mice. Additionally, TMZ treatment significantly decreased myocardial cell apoptosis (p < 0.05, ES = 0.980). These results demonstrate the efficacy of TMZ in reversing myocardial injury in DCM mice. CONCLUSION: TMZ can mitigate myocardial damage in db/db mice by downregulating the expression of caspase-12, a protein associated with the endoplasmic reticulum stress (ERS) cell apoptosis pathway, consequently diminishing cell apoptosis. This underscores the protective efficacy of TMZ against myocardial damage in mice afflicted with DCM.


Subject(s)
Diabetic Cardiomyopathies , Myocardium , Trimetazidine , Animals , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Mice , Male , Myocardium/pathology , Myocardium/metabolism , Mice, Inbred C57BL , Apoptosis/drug effects , Vasodilator Agents/therapeutic use , Vasodilator Agents/pharmacology , Disease Models, Animal , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism
5.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620034

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , Swine , Farnesyltranstransferase/metabolism , Viral Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction
6.
Anal Chem ; 96(13): 5178-5187, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38500378

ABSTRACT

Accurate, ultrasensitive, and point-of-care (POC) diagnosis of the African swine fever virus (ASFV) remains imperative to prevent its spread and limit the losses incurred. Herein, we propose a CRISPR-Cas12a-assisted triplex amplified colorimetric assay for ASFV DNA detection with ultrahigh sensitivity and specificity. The specific recognition of recombinase aided amplification (RAA)-amplified ASFV DNA could activate the Cas12a/crRNA/ASFV DNA complex, leading to the digestion of the linker DNA (bio-L1) on magnetic beads (MBs), thereby preventing its binding of gold nanoparticles (AuNPs) network. After magnetic separation, the release of AuNPs network comprising a substantial quantity of AuNPs could lead to a discernible alteration in color and significantly amplify the plasmonic signal, which could be read by spectrophotometers or smartphones. By combining the RAA, CRISPR/Cas12a-assisted cleavage, and AuNPs network-mediated colorimetric amplification together, the assay could detect as low as 0.1 copies/µL ASFV DNA within 1 h. The assay showed an accuracy of 100% for the detection of ASFV DNA in 16 swine tissue fluid samples, demonstrating its potential for on-site diagnosis of ASFV.


Subject(s)
African Swine Fever Virus , Metal Nanoparticles , Animals , Swine , African Swine Fever Virus/genetics , CRISPR-Cas Systems/genetics , Gold , Point-of-Care Systems , Hydrolases , Recombinases , Sensitivity and Specificity , Nucleic Acid Amplification Techniques
7.
Virology ; 593: 110014, 2024 05.
Article in English | MEDLINE | ID: mdl-38401340

ABSTRACT

African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly infectious and lethal swine disease. Currently, there is only one novel approved vaccine and no antiviral drugs for ASFV. In the study, a high-throughput screening of an FDA-approved drug library was performed to identify several drugs against ASFV infection in primary porcine alveolar macrophages. Triapine and cytarabine hydrochloride were identified as ASFV infection inhibitors in a dose-dependent manner. The two drugs executed their antiviral activity during the replication stage of ASFV. Furthermore, molecular docking studies showed that triapine might interact with the active center Fe2+ in the small subunit of ASFV ribonucleotide reductase while cytarabine hydrochloride metabolite might interact with three residues (Arg589, Lys593, and Lys631) of ASFV DNA polymerase to block new DNA chain extension. Taken together, our results suggest that triapine and cytarabine hydrochloride displayed significant antiviral activity against ASFV in vitro.


Subject(s)
African Swine Fever Virus , African Swine Fever , Pyridines , Thiosemicarbazones , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/metabolism , African Swine Fever/prevention & control , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Cytarabine/metabolism , Cytarabine/pharmacology , Virus Replication
8.
Small ; : e2311673, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420901

ABSTRACT

Inverted perovskite solar cells (PSCs) are considered as the most promising avenue for the commercialization of PSCs due to their potential inherent stability. However, suboptimal interface contacts between electron transport layer (ETL) (such as C60 ) and the perovskite absorbing layer within inverted PSCs always result in reduced efficiency and poor stability. Herein, a surface state manipulation strategy has been developed by employing a highly electronegative 4-fluorophenethylamine hydrochloride (p-F-PEACl) to effectively address the issue of poor interface contacts in the inverted PSCs. The p-F-PEACl demonstrates a robust interaction with perovskite film through bonding of amino group and Cl- with I- and Pb2+ ions in the perovskite, respectively. As such, the surface defects of perovskite film can be significantly reduced, leading to suppressed non-radiative recombination. Moreover, p-F-PEACl also plays a dual role in enhancing the surface potential and improving energy-level alignment at the interfaces between the perovskite and C60 carrier transport layer, which directly contributes to efficient charge extraction. Finally, the open-circuit voltage (Voc ) of devices increases from 1.104 V to 1.157 V, leading to an overall efficiency improvement from 22.34% to 24.78%. Furthermore, the p-F-PEACl-treated PSCs also display excellent stability.

9.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353534

ABSTRACT

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , African Swine Fever/metabolism , African Swine Fever/virology , African Swine Fever Virus/metabolism , Interferon Type I/metabolism , Signal Transduction/physiology , Swine , Vaccines/metabolism , Virus Replication
10.
Emerg Microbes Infect ; 13(1): 2300464, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38164797

ABSTRACT

Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Vaccines , Swine , Animals , African Swine Fever/prevention & control , Vaccines, Attenuated/genetics , Viral Proteins/genetics , Genotype , Viral Vaccines/genetics
11.
ACS Appl Mater Interfaces ; 15(51): 59946-59954, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38102995

ABSTRACT

In the past decade, two-dimensional (2D) perovskite surface treatment has emerged as a promising strategy to improve the performance of three-dimensional (3D) perovskite solar cells (PSCs). However, systematic studies on the impact of organic spacers of 2D perovskites on charge transport in 2D/3D PSCs are still lacking. Here, using 2D perovskite film/C60 heterostructures with different organic spacers [butylamine (BA), phenylethylamine (PEA), and 3-fluorophenethylamine (m-F-PEA)], we systematically investigated the carrier diffusion and interfacial transfer process. Using a 2D perovskite film with a thickness of ∼7 nm, we observed subtle differences in electron transfer time between 2D perovskites and C60 layers, which can be attributed to limited thickness and similar electron coupling strength. However, with the thickness of 2D perovskite increasing, electron transfer efficiency in the (BA)2PbI4/C60 heterostructure exhibits the most rapid decrease due to poor carrier diffusion of (BA)2PbI4 caused by stronger exciton-phonon interactions compared to (PEA)2PbI4 and (m-F-PEA)2PbI4 in thickness-dependent charge transfer research. Meanwhile, the fill factor of 2D/3D PSC treated with BAI exhibits the most rapid decrease compared to PEAI- and m-F-PEAI-treated 2D/3D PSCs with the concentration increase of passivators. This study indicates that it is easier to enhance open-circuit voltages and minimize the decrease of fill factor by increasing the concentration of passivators in 2D/3D PSCs when using passivators with a rigid molecular structure.

12.
PLoS Pathog ; 19(9): e1011641, 2023 09.
Article in English | MEDLINE | ID: mdl-37708231

ABSTRACT

RNA viruses cause numerous infectious diseases in humans and animals. The crosstalk between RNA viruses and the innate DNA sensing pathways attracts increasing attention. Recent studies showed that the cGAS-STING pathway plays an important role in restricting RNA viruses via mitochondria DNA (mtDNA) mediated activation. However, the mechanisms of cGAS mediated innate immune evasion by RNA viruses remain unknown. Here, we report that seneca valley virus (SVV) protease 3C disrupts mtDNA mediated innate immune sensing by cleaving porcine cGAS (pcGAS) in a species-specific manner. Mechanistically, a W/Q motif within the N-terminal domain of pcGAS is a unique cleavage site recognized by SVV 3C. Three conserved catalytic residues of SVV 3C cooperatively contribute to the cleavage of pcGAS, but not human cGAS (hcGAS) or mouse cGAS (mcGAS). Additionally, upon SVV infection and poly(dA:dT) transfection, pcGAS and SVV 3C colocalizes in the cells. Furthermore, SVV 3C disrupts pcGAS-mediated DNA binding, cGAMP synthesis and interferon induction by specifically cleaving pcGAS. This work uncovers a novel mechanism by which the viral protease cleaves the DNA sensor cGAS to evade innate immune response, suggesting a new antiviral approach against picornaviruses.


Subject(s)
Nucleotidyltransferases , Peptide Hydrolases , Picornaviridae , Animals , Humans , Mice , DNA, Mitochondrial , Endopeptidases , Mitochondria , Picornaviridae/physiology , Swine , Nucleotidyltransferases/metabolism
13.
J Virol ; 97(10): e0070423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768081

ABSTRACT

IMPORTANCE: African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.


Subject(s)
African Swine Fever Virus , Gene Deletion , Genes, Viral , Vaccines, Attenuated , Viral Vaccines , Animals , African Swine Fever/immunology , African Swine Fever/prevention & control , African Swine Fever/virology , African Swine Fever Virus/classification , African Swine Fever Virus/immunology , African Swine Fever Virus/pathogenicity , Sus scrofa/virology , Vaccines, Attenuated/immunology , Viral Proteins/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence , Virus Replication , Genes, Viral/genetics
14.
ACS Biomater Sci Eng ; 9(9): 5405-5417, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37638660

ABSTRACT

Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.


Subject(s)
Iron , Metal Nanoparticles , Metal-Organic Frameworks , Naphthoquinones , Neoplasms , Metal-Organic Frameworks/chemistry , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Neoplasms/therapy , Iron/chemistry , Naphthoquinones/administration & dosage , Naphthoquinones/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Microwaves/therapeutic use , Warburg Effect, Oncologic/drug effects , Hep G2 Cells , Cell Line, Tumor , L Cells , Female , Animals , Mice , Humans
15.
Viruses ; 15(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37515155

ABSTRACT

A cell line expressing the CD2v protein of ASFV was generated. The efficient expression of CD2v protein was determined by immunofluorescence and Western blotting. The CD2v protein was Ni-affinity purified from the supernatant of cell cultures. The CD2v-expressing cells showed properties of hemadsorption, and the secreted CD2v protein exhibited hemagglutinating activity. The antigenicity and immunoprotection ability of CD2v were evaluated by immunizing pigs alone, combined with a cell-line-expressed p30 protein or triple combined with p30 and K205R protein. Immunized pigs were challenged with the highly virulent ASFV strain HLJ/18. Virus challenge results showed that CD2v immunization alone could provide partial protection at the early infection stage. Protein p30 did not show synergistic protection effects in immunization combined with CD2v. Interestingly, immunization with the triple combination of CD2V, p30 and K205R reversed the protection effect. The viremia onset time was delayed, and one pig out of three recovered after the challenge. The pig recovered from ASFV clinical symptoms, the rectal temperature returned to normal levels and the viremia was cleared. The mechanism of this protection effect warrants further investigation.


Subject(s)
African Swine Fever Virus , African Swine Fever , Viral Vaccines , Swine , Animals , African Swine Fever Virus/genetics , Viral Proteins , Viremia/prevention & control , Cell Line , Mammals
16.
J Virol ; 97(9): e0057723, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37199611

ABSTRACT

African swine fever (ASF) is a highly contagious and acute hemorrhagic viral disease in domestic pigs and wild boars. Domestic pigs infected with virulent African swine fever virus (ASFV) isolates have a high mortality, approaching 100%. Identification of ASFV genes related to virulence/pathogenicity and deletion of them are considered to be key steps in the development of live attenuated vaccines, because the ability of ASFV to escape host innate immune responses is related to viral pathogenicity. However, the relationship between the host antiviral innate immune responses and the pathogenic genes of ASFV has not been fully understood. In this study, the ASFV H240R protein (pH240R), a capsid protein of ASFV, was found to inhibit type I interferon (IFN) production. Mechanistically, pH240R interacted with the N-terminal transmembrane domain of stimulator of interferon genes (STING) and inhibited its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Additionally, pH240R inhibited the phosphorylation of interferon regulatory factor 3 (IRF3) and TANK binding kinase 1 (TBK1), leading to reduced production of type I IFN. Consistent with these results, infection with H240R-deficient ASFV (ASFV-ΔH240R) induced more type I IFN than infection with its parental strain, ASFV HLJ/18. We also found that pH240R may enhance viral replication via inhibition of type I IFN production and the antiviral effect of interferon alpha (IFN-α). Taken together, our findings provide a new explanation for the reduction of ASFV's replication ability by knockout of the H240R gene and a clue for the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and acute hemorrhagic viral disease with a high mortality, approaching 100% in domestic pigs. However, the relationship between viral pathogenicity and immune evasion of ASFV is not fully understood, which limits the development of safe and effective ASF vaccines, specifically, live attenuated vaccines. In this study, we found that pH240R, as a potent antagonist, inhibited type I IFN production by targeting STING and inhibiting its oligomerization and translocation from the endoplasmic reticulum to the Golgi apparatus. Furthermore, we also found that deletion of the H240R gene reduced viral pathogenicity by enhancing type I IFN production, which decreases ASFV replication. Taken together, our findings provide a clue for the development of an ASFV live attenuated vaccine via deleting the H240R gene.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Viral Proteins , Animals , African Swine Fever/immunology , Interferon Type I/immunology , Sus scrofa , Swine , Vaccines, Attenuated
17.
Nat Commun ; 14(1): 3096, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248233

ABSTRACT

African swine fever virus (ASFV) poses a great threat to the global pig industry and food security. Currently, 24 ASFV genotypes have been reported but it is unclear whether recombination of different genotype viruses occurs in nature. In this study, we detect three recombinants of genotype I and II ASFVs in pigs in China. These recombinants are genetically similar and classified as genotype I according to their B646L gene, yet 10 discrete fragments accounting for over 56% of their genomes are derived from genotype II virus. Animal studies with one of the recombinant viruses indicate high lethality and transmissibility in pigs, and deletion of the virulence-related genes MGF_505/360 and EP402R derived from virulent genotype II virus highly attenuates its virulence. The live attenuated vaccine derived from genotype II ASFV is not protective against challenge of the recombinant virus. These naturally occurring recombinants of genotype I and II ASFVs have the potential to pose a challenge to the global pig industry.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/prevention & control , Viral Proteins/genetics , Virulence/genetics , Genotype , Sus scrofa
18.
Endokrynol Pol ; 74(2): 190-196, 2023.
Article in English | MEDLINE | ID: mdl-37039492

ABSTRACT

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. It can progress from simple steatosis to nonalcoholic steatohepatitis and may even develop into liver fibrosis, hepatocirrhosis, or hepatocellular carcinoma, but there is no effective treatment. MATERIAL AND METHODS: Wild-type (wt) and diabetic (db/db) mouse NAFLD-induced models were used to investigate the hepatoprotective effects and potential mechanisms of dapagliflozin (a new oral hypoglycaemic drug) on type 2 diabetes mellitus (T2DM) complicated with NAFLD, and to establish wt and db/db mouse NAFLD-induced and dapagliflozin treatment models. RESULTS: Dapagliflozin reduces blood glucose, glycosylated haemoglobin, blood lipids, and serum transaminase levels in db/db mice and improves T2DM-related liver injury accompanied by NAFLD; the mechanism may be related to the decrease in dipeptidyl-peptidase-4 (DPP4) protein expression and improvement in liver enzymes. Further mechanism-related studies by our team revealed that dapagliflozin can also downregulate the expression of DPP4 proteins in the liver and reduce serum soluble DPP4 enzyme levels, thereby improving the hepatic steatosis and insulin resistance of NAFLD. CONCLUSION: Dapagliflozin may be an effective drug for the treatment of T2DM-induced NAFLD and NAFLD, providing a reliable laboratory basis and new treatment methods for the clinical treatment of NAFLD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/pharmacology , Dipeptidyl Peptidase 4/therapeutic use , Liver
19.
Virol Sin ; 38(3): 459-469, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948461

ABSTRACT

African swine fever (ASF) is an acute, highly contagious and deadly viral disease in swine that jeopardizes the worldwide pig industry. Unfortunately, there are no authoritative vaccine and antiviral drug available for ASF control. African swine fever virus (ASFV) is the etiological agent of ASF. Among the ASFV proteins, p72 is the most abundant component in the virions and thus a potential target for anti-ASFV drug design. Here, we constructed a luciferase reporter system driven by the promoter of p72, which is transcribed by the co-transfected ASFV RNA polymerase complex. Using this system, we screened over 3200 natural product compounds and obtained three potent candidates against ASFV. We further evaluated the anti-ASFV effects and proved that among the three candidates, ailanthone (AIL) inhibits the replication of ASFV at the nanomolar concentration (IC50 â€‹= â€‹15 â€‹nmol/L). Our in vitro experiments indicated that the antiviral effect of AIL is associated with its inhibition of the HSP90-p23 cochaperone. Finally, we showed the antiviral activity of AIL on Zika virus and hepatitis B virus (HBV), which supports that AIL is a potential broad-spectrum antiviral agent.


Subject(s)
African Swine Fever Virus , African Swine Fever , Quassins , Zika Virus Infection , Zika Virus , Swine , Animals , African Swine Fever Virus/genetics , African Swine Fever/prevention & control , Antiviral Agents/pharmacology , Quassins/pharmacology
20.
J Immunol ; 210(9): 1338-1350, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36971697

ABSTRACT

African swine fever is a fatal infectious disease caused by African swine fever virus (ASFV). The high mortality caused by this infectious disease is a significant challenge to the swine industry worldwide. ASFV virulence is related to its ability to antagonize IFN response, yet the mechanism of antagonism is not understood. Recently, a less virulent recombinant virus has emerged that has a EP402R gene deletion within the parental ASFV HLJ/18 (ASFV-ΔEP402R) strain. EP402R gene encodes CD2v. Hence we hypothesized that ASFV uses CD2v protein to evade type I IFN-mediated innate immune response. We found that ASFV-ΔEP402R infection induced higher type I IFN response and increased the expression of IFN-stimulated genes in porcine alveolar macrophages when compared with parental ASFV HLJ/18. Consistent with these results, CD2v overexpression inhibited type I IFN production and IFN-stimulated gene expression. Mechanistically, CD2v, by interacting with the transmembrane domain of stimulator of IFN genes (STING), prevented the transport of STING to the Golgi apparatus, and thereby inhibited the cGMP-AMP synthase-STING signaling pathway. Furthermore, ASFV CD2v disrupted IFNAR1-TYK2 and IFNAR2-JAK1 interactions, and thereby inhibited JAK-STAT activation by IFN-α. In vivo, specific pathogen-free pigs infected with the mutant ASFV-ΔEP402R strain survived better than animals infected with the parental ASFV HLJ/18 strain. Consistent with this finding, IFN-ß protein levels in the peripheral blood of ASFV-ΔEP402R-challenged pigs were significantly higher than in the blood of ASFV HLJ/18-challenged pigs. Taken together, our findings suggest a molecular mechanism in which CD2v inhibits cGMP-AMP synthase-STING and IFN signaling pathways to evade the innate immune response rendering ASFV infection fatal in pigs.


Subject(s)
African Swine Fever Virus , African Swine Fever , Interferon Type I , Swine , Animals , African Swine Fever Virus/genetics , Viral Proteins , Signal Transduction , Gene Expression , Interferon Type I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...