Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1289555, 2024.
Article in English | MEDLINE | ID: mdl-38313797

ABSTRACT

Background: The novel International Association for the Study of Lung Cancer (IASLC) grading system suggests that poorly differentiated invasive pulmonary adenocarcinoma (IPA) has a worse prognosis. Therefore, prediction of poorly differentiated IPA before treatment can provide an essential reference for therapeutic modality and personalized follow-up strategy. This study intended to train a nomogram based on CT intratumoral and peritumoral radiomics features combined with clinical semantic features, which predicted poorly differentiated IPA and was tested in independent data cohorts regarding models' generalization ability. Methods: We retrospectively recruited 480 patients with IPA appearing as subsolid or solid lesions, confirmed by surgical pathology from two medical centers and collected their CT images and clinical information. Patients from the first center (n =363) were randomly assigned to the development cohort (n = 254) and internal testing cohort (n = 109) in a 7:3 ratio; patients (n = 117) from the second center served as the external testing cohort. Feature selection was performed by univariate analysis, multivariate analysis, Spearman correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the model performance. Results: The AUCs of the combined model based on intratumoral and peritumoral radiomics signatures in internal testing cohort and external testing cohort were 0.906 and 0.886, respectively. The AUCs of the nomogram that integrated clinical semantic features and combined radiomics signatures in internal testing cohort and external testing cohort were 0.921 and 0.887, respectively. The Delong test showed that the AUCs of the nomogram were significantly higher than that of the clinical semantic model in both the internal testing cohort(0.921 vs 0.789, p< 0.05) and external testing cohort(0.887 vs 0.829, p< 0.05). Conclusion: The nomogram based on CT intratumoral and peritumoral radiomics signatures with clinical semantic features has the potential to predict poorly differentiated IPA manifesting as subsolid or solid lesions preoperatively.

2.
Cancer Med ; 12(18): 18460-18469, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37723872

ABSTRACT

BACKGROUND: The surgical approach and prognosis for invasive adenocarcinoma (IAC) and minimally invasive adenocarcinoma (MIA) of the lung differ. However, they both manifest as identical ground-glass nodules (GGNs) in computed tomography images, and no effective method exists to discriminate them. METHODS: We developed and validated a three-dimensional (3D) deep transfer learning model to discriminate IAC from MIA based on CT images of GGNs. This model uses a 3D medical image pre-training model (MedicalNet) and a fusion model to build a classification network. Transfer learning was utilized for end-to-end predictive modeling of the cohort data of the first center, and the cohort data of the other two centers were used as independent external validation data. This study included 999 lung GGN images of 921 patients pathologically diagnosed with IAC or MIA at three cohort centers. RESULTS: The predictive performance of the model was assessed using the area under the receiver operating characteristic curve (AUC). The model had high diagnostic efficacy for the training and validation groups (accuracy: 89%, sensitivity: 95%, specificity: 84%, and AUC: 95% in the training group; accuracy: 88%, sensitivity: 84%, specificity: 93%, and AUC: 92% in the internal validation group; accuracy: 83%, sensitivity: 83%, specificity: 83%, and AUC: 89% in one external validation group; accuracy: 78%, sensitivity: 80%, specificity: 77%, and AUC: 82% in the other external validation group). CONCLUSIONS: Our 3D deep transfer learning model provides a noninvasive, low-cost, rapid, and reproducible method for preoperative prediction of IAC and MIA in lung cancer patients with GGNs. It can help clinicians to choose the optimal surgical strategy and improve the prognosis of patients.

3.
Front Oncol ; 13: 1078863, 2023.
Article in English | MEDLINE | ID: mdl-36890815

ABSTRACT

Background: This study aimed to establish an effective model for preoperative prediction of tumor deposits (TDs) in patients with rectal cancer (RC). Methods: In 500 patients, radiomic features were extracted from magnetic resonance imaging (MRI) using modalities such as high-resolution T2-weighted (HRT2) imaging and diffusion-weighted imaging (DWI). Machine learning (ML)-based and deep learning (DL)-based radiomic models were developed and integrated with clinical characteristics for TD prediction. The performance of the models was assessed using the area under the curve (AUC) over five-fold cross-validation. Results: A total of 564 radiomic features that quantified the intensity, shape, orientation, and texture of the tumor were extracted for each patient. The HRT2-ML, DWI-ML, Merged-ML, HRT2-DL, DWI-DL, and Merged-DL models demonstrated AUCs of 0.62 ± 0.02, 0.64 ± 0.08, 0.69 ± 0.04, 0.57 ± 0.06, 0.68 ± 0.03, and 0.59 ± 0.04, respectively. The clinical-ML, clinical-HRT2-ML, clinical-DWI-ML, clinical-Merged-ML, clinical-DL, clinical-HRT2-DL, clinical-DWI-DL, and clinical-Merged-DL models demonstrated AUCs of 0.81 ± 0.06, 0.79 ± 0.02, 0.81 ± 0.02, 0.83 ± 0.01, 0.81 ± 0.04, 0.83 ± 0.04, 0.90 ± 0.04, and 0.83 ± 0.05, respectively. The clinical-DWI-DL model achieved the best predictive performance (accuracy 0.84 ± 0.05, sensitivity 0.94 ± 0. 13, specificity 0.79 ± 0.04). Conclusions: A comprehensive model combining MRI radiomic features and clinical characteristics achieved promising performance in TD prediction for RC patients. This approach has the potential to assist clinicians in preoperative stage evaluation and personalized treatment of RC patients.

4.
Infect Drug Resist ; 15: 5953-5957, 2022.
Article in English | MEDLINE | ID: mdl-36262594

ABSTRACT

Aggregatibacter aphrophilus is part of the normal flora in the oropharynx and upper respiratory tract, which causes invasive bacteremia in rare cases. However, the culture and identification of Aggregatibacter aphrophilus are challenging, hence easily misdiagnosed or undetected in clinical practice. In this case, a 73-year-old male patient was admitted to the hospital with a fever and right hip pain. Routine blood and C-reactive protein tests showed abnormal inflammatory markers. Positive blood culture revealed the presence of Aggregatibacter aphrophilus through mass spectrometry. The computed tomography examination further revealed the presence of psoas abscess, pulmonary infection, and pleural effusion, which was relieved by ceftriaxone combined with levofloxacin therapy, the drainage of psoas abscess and pleural effusion. Therefore, since multiple anatomic sites infection, including bloodstream, psoas abscess and pulmonary infection caused by Aggregatibacter aphrophilus, is rare, sufficient attention should be paid to its clinical diagnosis and treatment.

5.
Front Oncol ; 12: 872503, 2022.
Article in English | MEDLINE | ID: mdl-35646675

ABSTRACT

Purpose: To establish and verify the ability of a radiomics prediction model to distinguish invasive adenocarcinoma (IAC) and minimal invasive adenocarcinoma (MIA) presenting as ground-glass nodules (GGNs). Methods: We retrospectively analyzed 118 lung GGN images and clinical data from 106 patients in our hospital from March 2016 to April 2019. All pathological classifications of lung GGN were confirmed as IAC or MIA by two pathologists. R language software (version 3.5.1) was used for the statistical analysis of the general clinical data. ITK-SNAP (version 3.6) and A.K. software (Analysis Kit, American GE Company) were used to manually outline the regions of interest of lung GGNs and collect three-dimensional radiomics features. Patients were randomly divided into training and verification groups (ratio, 7:3). Random forest combined with hyperparameter tuning was used for feature selection and prediction modeling. The receiver operating characteristic curve and the area under the curve (AUC) were used to evaluate model prediction efficacy. The calibration curve was used to evaluate the calibration effect. Results: There was no significant difference between IAC and MIA in terms of age, gender, smoking history, tumor history, and lung GGN location in both the training and verification groups (P>0.05). For each lung GGN, the collected data included 396 three-dimensional radiomics features in six categories. Based on the training cohort, nine optimal radiomics features in three categories were finally screened out, and a prediction model was established. We found that the training group had a high diagnostic efficacy [accuracy, sensitivity, specificity, and AUC of the training group were 0.89 (95%CI, 0.73 - 0.99), 0.98 (95%CI, 0.78 - 1.00), 0.81 (95%CI, 0.59 - 1.00), and 0.97 (95%CI, 0.92-1.00), respectively; those of the validation group were 0.80 (95%CI, 0.58 - 0.93), 0.82 (95%CI, 0.55 - 1.00), 0.78 (95%CI, 0.57 - 1.00), and 0.92 (95%CI, 0.83 - 1.00), respectively]. The model calibration curve showed good consistency between the predicted and actual probabilities. Conclusions: The radiomics prediction model established by combining random forest with hyperparameter tuning effectively distinguished IAC from MIA presenting as GGNs and represents a noninvasive, low-cost, rapid, and reproducible preoperative prediction method for clinical application.

6.
Data Brief ; 40: 107801, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35059483

ABSTRACT

In this article, we present a multicenter aortic vessel tree database collection, containing 56 aortas and their branches. The datasets have been acquired with computed tomography angiography (CTA) scans and each scan covers the ascending aorta, the aortic arch and its branches into the head/neck area, the thoracic aorta, the abdominal aorta and the lower abdominal aorta with the iliac arteries branching into the legs. For each scan, the collection provides a semi-automatically generated segmentation mask of the aortic vessel tree (ground truth). The scans come from three different collections and various hospitals, having various resolutions, which enables studying the geometry/shape variabilities of human aortas and its branches from different geographic locations. Furthermore, creating a robust statistical model of the shape of human aortic vessel trees, which can be used for various tasks such as the development of fully-automatic segmentation algorithms for new, unseen aortic vessel tree cases, e.g. by training deep learning-based approaches. Hence, the collection can serve as an evaluation set for automatic aortic vessel tree segmentation algorithms.

7.
Sci Rep ; 7(1): 14887, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097743

ABSTRACT

Pulmonary embolism (PE) remains largely underdiagnosed due to nonspecific symptoms. This study aims to evaluate typical symptoms of PE patients, their related predictors, and to differentiate typical clusters of patients and principal components of PE symptoms. Clinical data from a total of 551 PE patients between January 2012 and April 2016 were retrospectively reviewed. PE was diagnosed according to the European Society of Cardiology Guidelines. Logistic regression models, system clustering method, and principal component analysis were used to identify potential risk factors, different clusters of the patients, and principal components of PE symptoms. The most common symptoms of PE were dyspnea, cough, and tachypnea in more than 60% of patients. Some combined chronic conditions, laboratory and clinical indicators were found to be related to these clinical symptoms. Our study also suggested that PE is associated with a broad list of symptoms and some PE patients might share similar symptoms, and some PE symptoms were usually cooccurrence. Based on ten symptoms generated from our sample, we classified the patients into five clusters which represent five groups of PE patients during clinical practice, and identified four principal components of PE symptoms. These findings will improve our understanding of clinical symptoms and their potential combinations which are helpful for clinical diagnosis of PE.


Subject(s)
Pulmonary Embolism/diagnosis , Pulmonary Embolism/etiology , Aged , Aged, 80 and over , Cluster Analysis , Cough/complications , Dyspnea/complications , Female , Humans , Logistic Models , Male , Middle Aged , Principal Component Analysis , Retrospective Studies , Risk Factors , Tachypnea/complications
8.
Biomark Med ; 10(6): 587-96, 2016 06.
Article in English | MEDLINE | ID: mdl-26567584

ABSTRACT

BACKGROUND: Platelets play an important role in the pathogenesis of pulmonary embolism (PE). We aimed to investigate whether there is a correlation between platelet distribution width (PDW) and chronic obstructive pulmonary disease (COPD) patients with PE. METHODS: We conducted a retrospective study using 126 COPD patients with PE and 51 COPD patients without PE. Blood biomarkers, including PDW and d-dimer, were included. Odds ratios (OR) associated with PDW and interactions with d-dimer, SpO2 were estimated for PE. RESULTS: PDW was higher in the COPD patients with PE group (p = 0.007). A higher PDW had a significantly increased risk of PE than a lower PDW (adjusted OR 2.724, 95% CI: 1.290-5.753). CONCLUSION: PDW are elevated in COPD patients with PE and are associated with the risk of PE.


Subject(s)
Blood Platelets/cytology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Embolism/diagnosis , Aged , Aged, 80 and over , Biomarkers/blood , Coronary Angiography , Fibrin Fibrinogen Degradation Products/analysis , Hematologic Tests , Humans , Logistic Models , Natriuretic Peptide, Brain/analysis , Odds Ratio , Peptide Fragments/analysis , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Embolism/complications , Retrospective Studies , Risk Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...