Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 365: 121563, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909575

ABSTRACT

Steel slag (SS) is a byproduct that comes from the production of crude steel in alkaline oxidation furnaces. Resource utilization of steel slag, a calcium-silicon solid waste, is an urgent problem. This paper investigates a solid waste disposal method that applies different steel slag contents to modify dispersive soil. The engineering properties and modification mechanisms of dispersive soil specimens are studied and revealed by performing microstructure, mineral evolution, unconfined compressive strength (UCS), and tensile strength analysis. The pinhole test, mud ball crumb test (BCT), and mud cube crumb test (CCT) were carried out to determine the dispersivity of the soil specimens. Results show that when the steel slag content increases from 1% to 10%, the unconfined compressive strength and tensile strength increase by 176.05% and 75.40%, respectively. For soil specimens without curing time under 50 mm water head, the weight loss of the specimen with 10% steel slag content decreases by 72.03% compared to specimens with 1% steel slag content. Microstructural and mineralogical analyses indicate that the hydration reaction of steel slag changes the ionic composition of the soil and generates reaction products with effects such as filling and connection. To sum up, steel slag effectively improves water stability and mechanical properties of dispersive soil.


Subject(s)
Calcium Compounds , Silicates , Soil , Steel , Soil/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Tensile Strength , Compressive Strength
2.
Materials (Basel) ; 17(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473599

ABSTRACT

In salt lake areas, cast-in situ concrete structures are subjected to long-term corrosion by sulfate and magnesium ions. The properties of concrete can be improved by adding materials like basalt fiber (BF). To investigate the degradation process and mechanism of cast-in situ concrete with premixed BF under the dual corrosion of sulfate and magnesium salts, concrete with a content of BF ranging from 0 to 0.5% was prepared. Specimens were subjected to different internal and external corrosion conditions and immersed for 180 days. Dimension, mass, and appearance changes at different immersion times were recorded. The compressive and flexural strength of the specimens were tested and continually observed throughout the immersion time. Mineral and microstructural changes at different immersion times were determined by the XRD, TG, and SEM analysis methods. Results indicated that external sulfate-internal magnesium combined attack had a significant negative effect on the early strength. The compressive and flexural strength of the corroded specimens decreased by 17.2% and 14.1%, respectively, compared to the control group at 28 days. The premixed magnesium ions caused the decomposition of the C-S-H gel, resulting in severe spalling and lower mechanical properties after immersing for a long time. As the BF can inhibit crack development, the properties of the concrete premixed with BF were improved. Specimens exhibited superior performance at a BF content of 0.5%, resulting in a 16.2% increase in flexural strength. This paper serves as a valuable reference for the application of basalt fiber-reinforced concrete under the challenging conditions of sulfate-magnesium combined attack.

3.
Sci Rep ; 14(1): 6203, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485713

ABSTRACT

Freeze-thaw cycles and compactness are two critical factors that significantly affect the engineering properties and safety of building foundations, especially in seasonally frozen regions. This paper investigated the effects of freeze-thaw cycles on the shear strength of naturally strongly chlorine saline soil with the compactness of 85%, 90% and 95%. Three soil samples with different compactness were made. Size and mass changes were measured and recorded during freeze-thaw cycles. Shear strength under different vertical pressures was determined by direct shear tests, and the cohesion and friction angle were measured and discussed. Microstructure characteristic changes of saline soil samples were observed using scanning electron microscopy under different freeze-thaw cycles. Furthermore, numerical software was used to calculate the subsoil-bearing capacity and settlement of the electric tower foundation in the Qarhan Salt Lake region under different freeze-thaw cycles. Results show that the low-density soil shows thaw settlement deformation, but the high-density soil shows frost-heaving deformation with the increase in freeze-thaw cycles. The shear strength of the soil samples first increases and then decreases with the increase in freeze-thaw cycles. After 30 freeze-thaw cycles, the friction angle of soil samples is 28.3%, 29.2% and 29.6% lower than the soil samples without freeze-thaw cycle, the cohesion of soil samples is 71.4%, 60.1% and 54.4% lower than the samples without freeze-thaw cycle, and the cohesion and friction angle of soil samples with different compactness are close to each other. Microstructural changes indicate that the freeze-thaw cycle leads to the breakage of coarse particles and the aggregation of fine particles. Correspondingly, the structure type of soil changes from a granular stacked structure to a cemented-aggregated system. Besides, the quality loss of soil samples is at about 2% during the freeze-thaw cycles. Results suggest that there may be an optimal compactness between 90 and 95%, on the premise of meeting the design requirements and economic benefits. This study can provide theoretical guidance for foundation engineering constructions in seasonally frozen regions.

4.
Materials (Basel) ; 15(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36013888

ABSTRACT

Early degradation of cast-in-situ concrete induced by multiple internal-external sulfate combined attacks significantly affects the development of concrete strength. An experimental study regarding the effects of Ca2+ on the early degradation of cast-in-situ mortars subjected to internal-external sulfate and magnesium combined attacks is investigated in this paper. In particular, a specific method for accurately simulating the degradation of cast-in-situ structures was proposed in this experiment. Physical properties (including weight, size changes, and porosity), mechanical properties (including flexural strength and compressive strength), sulfate concentration, and microstructural properties were monitored during 28 days of immersion. The results show that an internal sulfate and magnesium combined attack (ISA-IMA) obviously retards the development of early strength and accelerates the degradation induced by external sulfate attack (ESA). The diffusion path of sulfate ions from outside is blocked by flake-shaped magnesium hydrates, delaying the penetration of external sulfate attacks. However, it is far from neutralizing the strength loss induced by an internal magnesium attack (IMA) at an early age. Premixed excessive Ca2+ would improve the strength development and pore structure of concrete or mortar, enhancing durability against corrosive conditions.

5.
Materials (Basel) ; 13(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708655

ABSTRACT

Sulfate induced degradation of concrete brings great damage to concrete structures in saline or offshore areas. The degradation mechanism of cast-in-situ concrete still remains unclear. This paper investigates the degradation process and corresponding mechanism of cast-in-situ concrete when immersed in sulfate-rich corrosive environments. Concrete samples with different curing conditions were prepared and immersed in sulfate solutions for 12 months to simulate the corrosion of precast and cast-in-situ concrete structures, respectively. Tests regarding the changes of physical, chemical, and mechanical properties of concrete samples were conducted and recorded continuously during the immersion. Micro-structural and mineral methods were performed to analyze the changes of concrete samples after immersion. Results indicate that the corrosion process of cast-in-situ concrete is much faster than the degradation of precast concrete. Chemical attack is the main cause of degradation for both precast and cast-in-situ concrete. Concrete in the environment with higher sulfate concentration suffers more severe degradation. The water/cement ratio has a significant influence on the durability of concrete. A lower water/cement ratio results in obviously better resistance against sulfate attack for both precast and cast-in-situ concrete.

SELECTION OF CITATIONS
SEARCH DETAIL
...