Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Acta Pharmacol Sin ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992119

ABSTRACT

The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.

2.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755662

ABSTRACT

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Acute Lung Injury , Flavanones , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Animals , Actinobacillus pleuropneumoniae/drug effects , Flavanones/therapeutic use , Flavanones/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , NF-E2-Related Factor 2/metabolism , Actinobacillus Infections/veterinary , Actinobacillus Infections/drug therapy , Mice , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Female , Membrane Proteins , Heme Oxygenase-1
3.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618249

ABSTRACT

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

4.
Food Chem ; 444: 138583, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38309082

ABSTRACT

Antarctic krill oil (AKO) is reddish-orange in color but undergoes changes during storage. To investigate the color deterioration and potential mechanisms involved, the changes in color, endogenous components (astaxanthin, fatty acids, and phospholipids), and reaction products (aldehydes, α-dicarbonyl compounds, and pyrroles) of AKO upon storage were determined. Although the visual color of AKO tended to darken upon storage, the colorimetric analysis and ultraviolet-visible spectrum analysis both indicated a fading in red and yellow due to the oxidative degradation of astaxanthin. During storage of AKO, lipid oxidation led to the formation of carbonyl compounds such as aldehydes and α-dicarbonyls. In addition, phosphatidylethanolamines (PEs) exhibited a faster loss rate than phosphatidylcholines. Moreover, hydrophobic pyrroles, the Maillard-like reaction products associated with primary amine groups in PEs accumulated. Therefore, it is suggested that the Maillard-like reaction between PEs and carbonyl compounds formed by lipid oxidation contributed to color darkening of AKO during storage.


Subject(s)
Euphausiacea , Animals , Euphausiacea/chemistry , Oils/chemistry , Aldehydes , Pyrroles , Xanthophylls
5.
PeerJ ; 12: e16465, 2024.
Article in English | MEDLINE | ID: mdl-38188146

ABSTRACT

Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.


Subject(s)
Central Nervous System Diseases , Extracellular Traps , Multiple Sclerosis , Humans , Central Nervous System , Neutrophils
6.
Heliyon ; 10(1): e23163, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163190

ABSTRACT

Integrin subunit α3 (ITGA3) is a member of the integrin family and interacts with extracellular matrix proteins. However, there have been few reports regarding the role of ITGA3 in papillary thyroid cancer. The expression levels of ITGA3 were firstly analyzed by bioinformatics tools and in vitro experiments, followed by evaluating its prognostic significance in papillary thyroid cancer patients using Kaplan-Meier, receiver operating characteristic, and Cox regression analyses. Then, cBioportal and GSCA databases were applied to evaluate genetic alterations of ITGA3. Functional enrichment analysis was conducted and the upstream miRNAs of ITGA3 were determined. The results showed that the ITGA3 mRNA and protein levels were higher in the papillary thyroid cancer group than those in the normal group (all P < 0.05). Moreover, ITGA3 performed well in distinguishing the recurrence-free survival (RFS) status and served as an independent prognostic factor of papillary thyroid cancer patients (P < 0.01). Besides, significant relations between ITGA3 and genetic alterations were observed (FDR <0.01). Functional enrichment analysis indicated ECM-receptor interaction and cell adhesion molecules were the shared regulatory pathways. Moreover, ITGA3 might be the target gene of hsa-miR-3129, hsa-miR-181d, hsa-miR-181b, hsa-miR-199a, and hsa-miR-199b. Of note, the ITGA3 mRNA level was reduced after has-miR-199b-3p/5p was overexpressed. In conclusion, ITGA3 could be a reliable biomarker and have potential value in predicting the RFS status of papillary thyroid cancer patients.

7.
Biomed Pharmacother ; 170: 116028, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113627

ABSTRACT

Klebsiella pneumoniae (Kpn) is an important pathogen of hospital-acquired pneumonia, which can lead to sepsis and death in severe cases. In this study, we simulated pneumonia induced by Kpn infection in mice to investigate the therapeutic effect of naringin (NAR) on bacterial-induced lung inflammation. Mice infected with Kpn exhibited increases in white blood cells (WBC) and neutrophils in the peripheral blood and pathological severe injury of the lungs. This injury was manifested by increased expression of the inflammatory cytokines interleukin (IL)- 18, IL-1ß, tumor necrosis factor-α (TNF-α) and IL-6, and elevated the expression of NLRP3 protein. NAR treatment could decrease the protein expression of NLRP3, alleviate lung inflammation, and reduce lung injury in mice caused by Kpn. Meanwhile, molecular docking results suggest NAR could bind to NLRP3 and Surface Plasmon Resonance (SPR) analyses also confirm this result. In vitro trials, we found that pretreated with NAR not only inhibited nuclear translocation of nuclear factor (NF)-κB protein P65 but also attenuated the protein interaction of NLRP3, caspase-1 and ASC and inhibited the assembly of NLRP3 inflammasome in mice AMs. Additionally, NAR could reduce intracellular potassium (K+) efflux, inhibiting NLRP3 inflammasome activation. These results indicated that NAR could protect against Kpn-induced pneumonia by inhibiting the overactivation of the NLRP3 inflammasome signaling pathway. The results of this study confirm the efficacy of NAR in treating bacterial pneumonia, refine the mechanism of action of NAR, and provide a theoretical basis for the research and development of NAR as an anti-inflammatory adjuvant.


Subject(s)
Inflammasomes , Pneumonia , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Klebsiella pneumoniae , Molecular Docking Simulation , NF-kappa B/metabolism , Pneumonia/drug therapy
8.
Front Pharmacol ; 14: 1211383, 2023.
Article in English | MEDLINE | ID: mdl-37701033

ABSTRACT

A fast, simple, and sensitive ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for the quantification of safinamide in rat plasma. Plasma samples were treated with acetonitrile for protein precipitation, and diazepam was used as an internal standard (IS). The analytes were separated on an Acquity UPLC C18 (2.1 mm × 50 mm, 1.7 µm) chromatographic column with gradient elution using a mobile phase (0.1% formic acid-acetonitrile). Then, the eluates were detected by electrospray ionization (ESI) in positive ion mode. The analytes were quantified by multiple reaction monitoring (MRM) using the transition m/z 303.3→215.0 of safinamide and m/z 285.0→154.0 of IS. Safinamide had good linearity in the concentration range of 1.0-2000 ng/mL, and the lower limit of quantitation (LLOQ) was 1.0 ng/mL. The intra- and inter-day precision and accuracy of safinamide were less than 7.63%, while the average recovery rate was 92.98%-100.29%. The method was validated to be stable and had low noise, short chromatographic run time, wide linear range, small sample volumes, low sample injection volumes, and high sensitivity. Therefore, it can be used in pharmacokinetics and preclinical and clinical studies.

9.
Front Immunol ; 14: 1199173, 2023.
Article in English | MEDLINE | ID: mdl-37457707

ABSTRACT

The immune system provides full protection for the body by specifically identifying 'self' and removing 'others'; thus protecting the body from diseases. The immune system includes innate immunity and adaptive immunity, which jointly coordinate the antitumor immune response. T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are the main tumor-killing immune cells active in three antitumor immune cycle. Cancer immunotherapy focusses on activating and strengthening immune response or eliminating suppression from tumor cells in each step of the cancer-immunity cycle; thus, it strengthens the body's immunity against tumors. In this review, the antitumor immune cycles of T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are discussed. Co-stimulatory and co-inhibitory molecules in the three activity cycles and the development of drugs and delivery systems targeting these molecules are emphasized, and the current state of the art of drug delivery systems for cancer immunotherapy are summarized.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Tumor-Associated Macrophages/pathology , Killer Cells, Natural , Immunotherapy , Drug Delivery Systems
10.
Molecules ; 28(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241980

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease triggered by a cascading inflammatory response. Sigesbeckia Herba (SH) has long been utilized as a traditional remedy to alleviate symptoms associated with rheumatism. Our previous study found that leocarpinolide B (LB), a sesquiterpene lactone isolated from the whole plant of SH, possesses potent a anti-inflammatory effect on macrophages. This study was designed to evaluate the therapeutic effects of LB on RA, and further investigate the underlying mechanisms. In collagen type II-induced arthritic mice, LB was demonstrated to decrease the production of autoimmune antibodies in serum and inflammatory cytokines in the joint muscles and recover the decreased regulatory T lymphocytes in spleen. Moreover, LB significantly suppressed the inflammatory infiltration, formation of pannus and bone erosion in the paw joints. In vitro testing showed that LB inhibited the proliferation, migration, invasion, and secretion of inflammatory cytokines in IL-1ß-induced human synovial SW982 cells. Network pharmacology and molecular docking suggested NF-κB p65 could be the potential target of LB on RA treatment, subsequent experimental investigation confirmed that LB directly interacted with NF-κB p65 and reduced the DNA binding activity of NF-κB in synovial cells. In conclusion, LB significantly attenuated the collagen type II-induced arthritis, which was at least involved in the inhibition of DNA binding activity of NF-κB through a direct binding to NF-κB p65. These findings suggest that LB could be a valuable lead compound for developing anti-RA drugs.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Humans , Animals , NF-kappa B/metabolism , Collagen Type II , Molecular Docking Simulation , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Cytokines/metabolism , DNA/therapeutic use
11.
Bioorg Med Chem ; 82: 117234, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36906964

ABSTRACT

Cancer with low survival rates is the second main cause of death among all diseases in the world and consequently, effective antineoplastic agents are urgently needed. Allosecurinine is a plant-derived indolicidine securinega alkaloid shown bioactivity. The object of this study is to investigate synthetic allosecurinine derivatives with considerable anticancer capacity against nine human cancer cell lines as well as mechanism of action. We synthesized twenty-three novel allosecurinine derivatives and evaluated their antitumor activity against nine cancer cell lines for 72 h by MTT and CCK8 assays. FCM was applied to analyze the apoptosis, mitochondrial membrane potential, DNA content, ROS production, CD11b expression. Western blot was selected to analyze the protein expression. Structure-activity relationships were established and potential anticancer lead BA-3 which induced differentiation of leukemia cells towards granulocytosis at low concentration and apoptosis at high concentration was identified. Mechanism studies showed that mitochondrial pathway mediated apoptosis within cancer cells with cell cycle blocking was induced by BA-3. In addition, western blot assays revealed that BA-3 induced expression of the proapoptotic factor Bax, p21 and reduced the levels of antiapoptotic protein such as Bcl-2, XIAP, YAP1, PARP, STAT3, p-STAT3, and c-Myc. Collectively, BA-3 was a lead compound for oncotherapy at least in part, through the STAT3 pathway. These results were an important step in further studies on allosecurinine-based antitumor agent development.


Subject(s)
Alkaloids , Antineoplastic Agents , Heterocyclic Compounds, Bridged-Ring , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Heterocyclic Compounds, Bridged-Ring/pharmacology , Lactones/pharmacology , Apoptosis , Alkaloids/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Cell Line, Tumor
12.
Food Chem ; 409: 135333, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36592605

ABSTRACT

Label-free quantitative proteomic analysis was utilized to determine the key proteins that affect texture properties of sea cucumber body wall (SCBW) with different boiling heating treatment. 862, 363, 315, and 258 proteins were confirmed in water-soluble fractions from fresh group, 0.5 h-, 2 h- and 4 h-heat treatment group, respectively. During boiling heating treatment, proteins with an increased abundance in water-soluble fraction primarily belong to structural proteins, such as collagens, microfibril-associated proteins, glycoproteins, and muscle proteins. It was speculated that the degradation of these structural proteins caused the progressive disintegration of network skeleton of collagen fibres and FMs as well as the gelatinization, thus resulted in the decrease of hardness and shear force. Besides, the degradation of FMs was occurred layer by layer during boiling heating treatment, and the fibrilin-1 outer layer degraded first, followed by the fibrilin-2 core component.


Subject(s)
Sea Cucumbers , Animals , Sea Cucumbers/chemistry , Proteome/metabolism , Water/metabolism , Proteomics , Heating
13.
Food Chem ; 400: 134055, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36075164

ABSTRACT

The structural foundation of texture changes in sea cucumber body wall (SCBW) during boiling was investigated using second harmonic generation (SHG) microscopy for the first time. The results from SHG signal imaging, light microscopy, scanning electron microscopy and transmission electron microscopy indicated the hierarchical structures of collagen in SCBW underwent progressive destruction with the prolongation of boiling time, including the depolymerization of collagen fibres, the uncoiling and disaggregation of collagen fibrils, the destruction of collagen microfibrils, the loosing of triple helix structure of collagen, and the degradation and gelatinization of collagen, which contributed to the progressive decline in texture indicators including shear force and hardness. SHG analysis also indicated that although collagen macromolecules such as collagen fibres, collagen fibrils and collagen microfibrils could be observed in 0.5 h-boiled and 2 h-boiled SCBW, monomeric collagen, the basic structural components of those macromolecules, has been already damaged.


Subject(s)
Sea Cucumbers , Second Harmonic Generation Microscopy , Animals , Collagen/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Sea Cucumbers/chemistry
14.
Inflammation ; 46(1): 35-46, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35953687

ABSTRACT

Atherosclerosis (AS) is a chronic inflammatory disease with thickening or hardening of the arteries, which led to the built-up of plaques in the inner lining of an artery. Among all the clarified pathogenesis, the over-activation of inflammatory reaction is one of the most acknowledged one. The nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome, as a vital and special form of inflammation and innate immunity, has been widely revealed to participate in the onset and development of AS. This review will introduce the process of the pathogenesis and progression of AS, and will describe the biological features of the NLRP3 inflammasome. Furthermore, the role of the NLRP3 inflammasome in AS and the possible mechanisms will be discussed. In addition, several kinds of agents with the effect of anti-atherosclerotic taking advantage of the NLRP3 inflammasome intervention will be described and discussed in detail, including natural compounds (baicalin, dihydromyricetin, luteolin, 5-deoxy-rutaecarpine (R3) and Salvianolic acid A, etc.), microRNAs (microRNA-30c-5p, microRNA-9, microRNA-146a-5p, microRNA-16-5p and microRNA-181a, etc.), and autophagy regulators (melatonin, dietary PUFA and arglabin, etc.). We aim to provide novel insights in the exploration of the specific mechanisms of AS and the development of new treatments of AS.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Atherosclerosis/pathology , Inflammation/pathology
15.
Mar Drugs ; 20(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36421997

ABSTRACT

Low molecular weight (<5 kDa) peptides from mussels (Mytilus edulis) (MPs) and the peptides from clams (Ruditapes philippinarum) (CPs) were prepared through enzymatic hydrolysis by proteases (dispase, pepsin, trypsin, alcalase and papain). Both the MPs and the CPs showed excellent in vitro scavenging ability of free radicals including OH, DPPH and ABTS in the concentration range of 0.625−10.000 mg/mL. By contrast, the MPs hydrolyzed by alcalase (MPs-A) and the CPs hydrolyzed by dispase (CPs-D) had the highest antioxidant activities. Furthermore, MPs-A and CPs-D exhibited protective capabilities against oxidative damage induced by H2O2 in HepG2 cells in the concentration range of 25−800 µg/mL. Meanwhile, compared with the corresponding indicators of the negative control (alcohol-fed) mice, lower contents of hepatic MDA and serums ALT and AST, as well as higher activities of hepatic SOD and GSH-PX were observed in experiment mice treated with MPs-A and CPs-D. The present results clearly indicated that Mytilus edulis and Ruditapes philippinarum are good sources of hepatoprotective peptides.


Subject(s)
Mytilus edulis , Mice , Animals , Mytilus edulis/chemistry , Hydrogen Peroxide , Peptides/pharmacology , Peptides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Subtilisins
16.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296847

ABSTRACT

Laser fabrication of metallic superhydrophobic surfaces (SHSs) for anti-frosting has recently attracted considerable attention. Effective anti-frosting SHSs require the efficient removal of condensed microdroplets through self-propelled droplet jumping, which is strongly influenced by the surface morphology. However, detailed analyses of the condensate self-removal capability of laser-structured surfaces are limited, and guidelines for laser processing parameter control for fabricating rationally structured SHSs for anti-frosting have not yet been established. Herein, a series of nanostructured copper-zinc alloy SHSs are facilely constructed through ultrafast laser processing. The surface morphology can be properly tuned by adjusting the laser processing parameters. The relationship between the surface morphologies and condensate self-removal capability is investigated, and a guideline for laser processing parameterization for fabricating optimal anti-frosting SHSs is established. After 120 min of the frosting test, the optimized surface exhibits less than 70% frost coverage because the remarkably enhanced condensate self-removal capability reduces the water accumulation amount and frost propagation speed (<1 µm/s). Additionally, the material adaptability of the proposed technique is validated by extending this methodology to other metals and metal alloys. This study provides valuable and instructive insights into the design and optimization of metallic anti-frosting SHSs by ultrafast laser processing.

17.
Transl Androl Urol ; 11(8): 1189-1199, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36092840

ABSTRACT

Background and Objective: Glucocorticoids, secreted from the adrenal gland, are commonly used in the treatment of castration-resistant prostate cancer (CRPC) because of their anti-inflammatory and anti-toxic effects. However, glucocorticoids have been reported to have the opposite effects within the course of treatment. Many studies have shown that glucocorticoid receptors (GRs) are involved in the establishment of a dominant population of androgen-independent malignant cells, which may result in CRPC. In this review, we summarized the mechanisms of GRs in CRPC and the clinical application of glucocorticoids based on the present evidence. Methods: We summarized the isoforms of GRs and the mechanisms involved in CRPC. An updated literature search was performed from the ClinicalTrials database, the National Center for Biotechnology Information database and European Union Drug Regulating Authorities Clinical Trials database. The focus was on the timeframe from 2017 to 2022. At least one primary or secondary outcome [prostate-specific antigen (PSA) response rate, progression-free survival (PFS) or overall survival (OS) and median time to PSA progression] according to studies should be included. Key Content and Findings: The molecular structures and applications of the isoforms of GR have been intensively researched in the past 60 years. In recent years, researchers have pointed out that GRs may be involved in the development of CRPC via genomic and non-genomic effects. Clinical trials in the past 5 years have focused on the efficacy of drugs regarding CRPC. The use of glucocorticoids during treatments of CRPC follows the guidelines (e.g., NCCN Guidelines®, guidelines of CSCO, etc.). Based on the collected data, prednisone appears to be the most widely used steroid hormone, followed by dexamethasone. Comparisons of the PSA response rate and the median time to PSA progression revealed that the efficacy of the 2 hormones is similar; however, further research on the effect of steroid hormone in CRPC is still required. Conclusions: Various GR isoforms may play an important part in the development of CRPC, whose mechanism remains unclear. Most clinical trials have focused on the use of prednisone in the last 5 years. The efficacy of prednisone and dexamethasone is similar.

18.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36083350

ABSTRACT

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Humans , Mice , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Immunity, Cellular , Mice, Transgenic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, DNA/genetics
19.
Food Sci Nutr ; 10(8): 2804-2812, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35959263

ABSTRACT

Through monitoring Rancimat induction time (RIT), peroxide value (POV), and thiobarbituric acid-reactive substances (TBARS) of docosahexaenoic acid (DHA) algae oil and walnut oil during accelerated storage, the effects of the single and the combinations of seven kinds of antioxidants involving ascorbyl palmitate (AP), phytic acid (PA), vitamin E (VE), antioxidant of bamboo leaves (AOB), rosemary extract, tea polyphenols (TP), and tea polyphenol palmitate (TPP) against lipid oxidation were evaluated. RIT, POV, and TBARS results showed that the DHA algae oil sample containing 600 mg/kg TPP revealed the strongest stability and the walnut oil sample containing 450 mg/kg TPP and 100 mg/kg TP revealed the strongest stability. Then, the shelf lives of two oils were predicted from the extrapolation of the linear regression model between Log RIT and temperature. Our results indicated that the optimal antioxidant could prolong the shelf lives of DHA algae oil and walnut oil by 2.31- and 7.74-fold, respectively.

20.
Front Pharmacol ; 13: 846631, 2022.
Article in English | MEDLINE | ID: mdl-35370714

ABSTRACT

Neuroinflammation is closely related to the pathogenesis of perioperative neurocognitive disorders (PNDs), which is characterized by the activation of microglia, inflammatory pathways and the release of inflammatory mediators. Sigesbeckia orientalis L. (SO) is a traditional Chinese medicine which demonstrates anti-inflammatory activities in different models. In this study, we aim to isolate the active fraction from the extract of SO with higher anti-inflammatory potential and confirm if the selected fraction exerts neuroprotection against the development of PND in an animal model. Moreover, the components in the selected fraction would be determined by UPLC-PDA analysis. Three fractions were prepared by column chromatography packed with three different macroporous resins. Anti-inflammatory activities of prepared fractions were accessed in microglial BV2 cultures by nitric oxide release, gene expression of inflammatory cytokines and activation of inflammatory JNK and NF-kB pathway molecules. Our results demonstrated that the fraction prepared from D101 macroporous resin (D101 fraction) exhibited a more potent anti-neuroinflammatory effect. The neuroprotective effect of D101 fraction was further examined in postoperative mice. Our results showed that surgery-induced cognitive dysfunction was attenuated by the D101 fraction treatment. This fraction also reduced microglial activation, inflammatory cytokines and inhibiting JNK and NF-kB pathway molecules in the hippocampus. In addition, surgery induced dendritic spine loss while D101 fraction ameliorated the spine loss in the hippocampus. For safety concerns, anti-thrombotic effect was examined by tail bleeding assay and no significant change of the bleeding pattern was found. UPLC-PDA analysis indicated that flavonoids (rutin, isochlorogenic acid A, isochlorogenic acid C) and terpenoid (darutoside) were the most important components in the D101 fraction. Our results support a therapeutic, as well as the translational potential for D101 fraction in ameliorating postoperative neuroinflammation and subsequent PND in the clinical setting without increasing bleeding tendencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...