Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35682527

ABSTRACT

Conversion of farmlands to forests and grasslands (CFFG) is one of the major ecological projects with the largest investment, strongest policy, widest coverage and highest degree of participation in China, and even in the world. In order to scientifically evaluate the benefits and dynamic changes, better serve the decision-making, consolidate the achievements and promote the high-quality development of this project, it is of great significance to organize the monitoring and evaluation of its benefits. On the basis of reviewing and summarizing the monitoring and evaluation history of the benefits, this study established an indicator system for comprehensive monitoring and evaluation, composed of three components of benefits, 10 categories and 48 indicators, including 23 indicators of ecological benefits, 11 indicators of economic benefits and 14 indicators of social benefits. These methods of monitoring and evaluation are applied to the systematic and full coverage monitoring and evaluation of the national project of CFFG for the first time. There are four aspects of the innovation of this research: First, it is the first time that a comprehensive ecological, economic and social benefit evaluation indicator system has been established. Second, it is the first time that quantitative evaluation methods have been established. Third, it is the first comprehensive quantitative assessment of the CFFG project. Fourth, this is a full-scale evaluation of the project for the first time. The evaluation results show that the total value of the three benefits from the CFFG project is 2405.046 billion Yuan (354.4129 billion US$)·y-1, of which the ecological benefit is 1416.864 billion Yuan (208.7922 billion US$)·y-1, the economic benefit is 255.486 billion Yuan (37.649 billion US$)·y-1 and the social benefit is 732.696 billion Yuan (107.9717 billion US$)·y-1, accounting for 58.92%, 10.62% and 30.46%, respectively, of the total benefits. Our results provide detailed evaluation of the achievement and benefits of the CFFG project.


Subject(s)
Forests , Grassland , China , Ecosystem , Farms , Investments
2.
Ecol Evol ; 10(4): 2051-2061, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128137

ABSTRACT

Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4-6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient-poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.

3.
Ecol Evol ; 9(17): 9782-9793, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31534693

ABSTRACT

The increase in atmospheric nitrogen (N) deposition has resulted in some terrestrial ecological changes. In order to identify the response of sensitive indicators to N input and estimate the sensitivity and saturation thresholds in alpine grasslands, we set up a series of multilevel N addition experiments in four types of alpine grasslands (alpine meadow [AM], alpine meadow-steppe [AMS], alpine steppe [AS], and alpine desert-steppe [ADS]) along with a decreasing precipitation gradient from east to west on the Northern Tibetan Plateau. N addition only had significant effects on species diversity in AMS, while had no effects on the other three alpine grasslands. Aboveground biomass of grasses and overall community in ADS were enhanced with increasing N addition, but such effects did not occur in AS. Legume biomass in ADS and AS showed similar unimodal patterns and exhibited a decreasing tend in AM. Regression fitting showed that the most sensitive functional groups were grasses, and the N saturation thresholds were 103, 115, 136, and 156 kg N hm-2 year-1 in AM, AMS, AS, and ADS, respectively. This suggests that alpine grasslands become more and more insensitive to N input with precipitation decrease. N saturation thresholds also negatively correlated with soil N availability. N sensitivity differences caused by precipitation and nutrient availability suggest that alpine grasslands along the precipitation gradient will respond differently to atmospheric N deposition in the future global change scenario. This different sensitivity should also be taken into consideration when using N fertilization to restore degraded grasslands.

4.
Ecol Evol ; 7(18): 7201-7212, 2017 09.
Article in English | MEDLINE | ID: mdl-28944011

ABSTRACT

Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient-poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient-poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.

5.
Environ Monit Assess ; 186(8): 5185-97, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24715617

ABSTRACT

A thorough understanding of groundwater recharge source, particularly its rate, is usually a prerequisite for effective water resources management. In this paper, we report the impact of Yellow River water seepage from the North Henan Plain, using both hydrogeochemical and stable isotopic analysis data. Seven Yellow River water samples, 10 groundwater samples from a river-parallel transect, and 36 groundwater samples from four different perpendicular transects to the Yellow River in the western, middle, and eastern plain were collected and analyzed. It inferred that cation exchange of Ca(2+) and/or Mg(2+) for Na(+) occurred in groundwaters because of the dissolution of carbonate rocks. The hydrogeochemical results indicate that western piedmont lateral groundwater and the Yellow River are both important sources of groundwater recharge for the western transect of the North Henan Plain, while the former is a greater recharge source for the middle transect, and the latter is a greater recharge source for the eastern transect. Stable isotope data support Yellow River water incursion into the groundwater. The approximate distance (based on chloride concentration) from the Yellow River to border of the impact zone is17.43-23.40 km in the western plain, 52.46 km in the middle plain, and 49.82 km in the eastern plain.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Isotopes/analysis , Carbonates/analysis , China , Chlorides/analysis , Rivers , Water Movements
6.
Huan Jing Ke Xue ; 34(1): 121-8, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23487927

ABSTRACT

In order to investigate the contamination levels of groundwater in the irrigation districts of the lower reaches of Yellow River, fifty-nine groundwater samples collected from the irrigation districts of Henan and Shandong provinces, were analyzed. Health risks associated with eleven metals (Ba, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) were assessed using water pollution index and USEPA health risk assessment model. The average concentrations of Fe with 0.496 mg x L(-1) and Zn with 0.445 mg x L(-1) were higher than the concentrations of other heavy metals. Concentrations of Fe, Mn, Se and Zn exceeded the relevant standards and the over-standard rates by 27.12%, 27.12%, 15.25% and 5.09%, respectively. Inverse distance weighted method was applied to estimate the unobserved points and their distribution maps were obtained, which indicated that areas of over-standard heavy metals were Wucheng country, Fan country, Dong'e country, Yucheng city and Guan country. Health risks of ingestion of water for all non-carcinogenic metals are higher than those of dermal absorption, while health risks of ingestion of water for carcinogenic metals is lower than those of dermal absorption. Among the health risks caused by the carcinogenic metals in drinking water and dermal absorption, the highest risks associated with Cr, are seven times and twenty-eight times as that of Cd, respectively, but both were significantly lower than the maximum allowance levels recommended by ICRP (5 x 10(-5) a (-1)). The non-carcinogenic metal risks( Ba, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn), ranging from 1.73 x 10(-13) to 3.46 x 10(-10) a(-1) in dermal absorption and from 1.13 x 10(-9) to 6.06 x 10(-8) a(-1) in drinking water, were much lower than the maximum allowance levels.


Subject(s)
Agricultural Irrigation , Environmental Monitoring/methods , Groundwater/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Proportional Hazards Models , Risk Assessment , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...