Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Pept Lett ; 31(2): 141-152, 2024.
Article in English | MEDLINE | ID: mdl-38243926

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue. OBJECTIVES: To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in Escherichia coli expression system. RESULTS: Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of ß -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system. CONCLUSION: Antimicrobial peptides Histatin 1, ß -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the Escherichia coli expression system.


Subject(s)
Escherichia coli , Histatins , Recombinant Fusion Proteins , Histatins/genetics , Histatins/metabolism , Histatins/chemistry , Histatins/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/metabolism , Microbial Sensitivity Tests , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/biosynthesis , Antimicrobial Peptides/metabolism , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/chemistry , Humans
2.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38268490

ABSTRACT

Traditional industrial Saccharomyces cerevisiae could not metabolize xylose due to the lack of a specific enzyme system for the reaction from xylose to xylulose. This study aims to metabolically remould industrial S. cerevisiae for the purpose of utilizing both glucose and xylose with high efficiency. Heterologous gene xylA from Piromyces and homologous genes related to xylose utilization were selected to construct expression cassettes and integrated into genome. The engineered strain was domesticated with industrial material under optimizing conditions subsequently to further improve xylose utilization rates. The resulting S. cerevisiae strain ABX0928-0630 exhibits a rapid growth rate and possesses near 100% xylose utilization efficiency to produce ethanol with industrial material. Pilot-scale fermentation indicated the predominant feature of ABX0928-0630 for industrial application, with ethanol yield of 0.48 g/g sugars after 48 hours and volumetric xylose consumption rate of 0.87 g/l/h during the first 24 hours. Transcriptome analysis during the modification and domestication process revealed a significant increase in the expression level of pathways associated with sugar metabolism and sugar sensing. Meanwhile, genes related to glycerol lipid metabolism exhibited a pattern of initial increase followed by a subsequent decrease, providing a valuable reference for the construction of efficient xylose-fermenting strains.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Xylose/metabolism , Fermentation , Saccharomyces cerevisiae Proteins/genetics , Ethanol/metabolism
3.
Genes (Basel) ; 10(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835855

ABSTRACT

De novo shoot regeneration is one of the important manifestations of cell totipotency in organogenesis, which reflects a survival strategy organism evolved when facing natural selection. Compared with tissue regeneration, and somatic embryogenesis, de novo shoot regeneration denotes a shoot regeneration process directly from detatched or injured tissues of plant. Studies on plant shoot regeneration had identified key genes mediating shoot regeneration. However, knowledge was derived from Arabidopsis; the regeneration capacity is hugely distinct among species. To achieve a comprehensive understanding of the shoot regeneration mechanism from tree species, we select four genetic lines of Populus euphratica from a natural population to be sequenced at transcriptome level. On the basis of the large difference of differentiation capacity, between the highly differentiated (HD) and low differentiated (LD) groups, the analysis of differential expression identified 4920 differentially expressed genes (DEGs), which were revealed in five groups of expression patterns by clustering analysis. Enrichment showed crucial pathways involved in regulation of regeneration difference, including "plant hormone signal transduction", "cell differentiation", "cellular response to auxin stimulus", and "auxin-activated signaling pathway". The expression of nine genes reported to be associated with shoot regeneration was validated using quantitative real-time PCR (qRT-PCR). For the specificity of regeneration mechanism with P. euphratica, large amount of DEGs involved in "plant-pathogen interaction", ubiquitin-26S proteosome mediated proteolysis pathway, stress-responsive DEGs, and senescence-associated DEGs were summarized to possibly account for the differentiation difference with distinct genotypes of P. euphratica. The result in this study helps screening of key regulators in mediating the shoot differentiation. The transcriptomic characteristic in P. euphratica further enhances our understanding of key processes affecting the regeneration capacity of de novo shoots among distinct species.


Subject(s)
Plant Shoots/genetics , Populus/genetics , Cell Differentiation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Organogenesis, Plant/genetics , Plant Growth Regulators/genetics , Plant Shoots/growth & development , Populus/growth & development , Sequence Analysis, RNA/methods , Transcriptome/genetics
4.
Cell Physiol Biochem ; 50(1): 332-341, 2018.
Article in English | MEDLINE | ID: mdl-30282065

ABSTRACT

BACKGROUND/AIMS: Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs) to compete for microRNAs (miRNAs) in cancer metastasis. Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancers and rare biomarkers could predict the clinical prognosis of this disease and its therapeutic effect. METHODS: Weighted gene co-expression network analysis (WGCNA) was performed to identify differentially expressed mRNAs (DEmRNAs) that might be key genes. GO enrichment and protein-protein interaction (PPI) analyses were performed to identify the principal functions of the DEmRNAs. An lncRNA-miRNA-mRNA network was constructed to understand the regulatory mechanisms in HNSCC. The prognostic signatures of mRNAs, miRNAs, and lncRNAs were determined by Gene Expression Profiling Interactive Analysis (GEPIA) and using Kaplan-Meier survival curves for patients with lung squamous cell carcinoma. RESULTS: We identified 2,023 DEmRNAs, 1,048 differentially expressed lncRNAs (DElncRNAs), and 82 differentially expressed miRNAs (DEmiRNAs). We found that eight DEmRNAs, 53 DElncRNAs, and 16 DEmiRNAs interacted in the ceRNA network. Three ceRNAs (HCG22, LINC00460 and STC2) were significantly correlated with survival. STC2 transcript levels were significantly higher in tumour tissues than in normal tissues, and the STC2 expression was slightly upregulated at different stages of HNSCC. CONCLUSION: LINC00460, HCG22 and STC2 exhibited aberrant levels of expression and may participate in the pathogenesis of HNSCC.


Subject(s)
Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Gene Regulatory Networks/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Humans , Kaplan-Meier Estimate , Protein Interaction Maps/genetics , Sequence Analysis, RNA , Squamous Cell Carcinoma of Head and Neck , Transcriptome
5.
Plant J ; 90(5): 918-928, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28244225

ABSTRACT

The coordination of shoots and roots is critical for plants to adapt to changing environments by fine-tuning energy production in leaves and the availability of water and nutrients from roots. To understand the genetic architecture of how these two organs covary during developmental ontogeny, we conducted a mapping experiment using Euphrates poplar (Populus euphratica), a so-called hero tree able to grow in the desert. We geminated intraspecific F1 seeds of Euphrates Poplar individually in a tube to obtain a total of 370 seedlings, whose shoot and taproot lengths were measured repeatedly during the early stage of growth. By fitting a growth equation, we estimated asymptotic growth, relative growth rate, the timing of inflection point and duration of linear growth for both shoot and taproot growth. Treating these heterochronic parameters as phenotypes, a univariate mapping model detected 19 heterochronic quantitative trait loci (hQTLs), of which 15 mediate the forms of shoot growth and four mediate taproot growth. A bivariate mapping model identified 11 pleiotropic hQTLs that determine the covariation of shoot and taproot growth. Most QTLs detected reside within the region of candidate genes with various functions, thus confirming their roles in the biochemical processes underlying plant growth.


Subject(s)
Plant Roots/growth & development , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/genetics , Populus/growth & development , Populus/genetics , Seedlings/growth & development , Seedlings/genetics , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...