Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 823: 153435, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35092780

ABSTRACT

Antimony (Sb) accumulation in soil poses great potential risk to ecological environment, and its mobilization, transformation and bioavailability are controlled by its fractions and species. Hence, it is important to develop functional materials with both adsorption and oxidation that achieve detoxification and control the mobilization of Sb. In this study, the synthesized zirconium­manganese oxide (ZrMn) could extremely promoted the transformation of antimonite [Sb(III)] to antimonate [Sb(V)], induced the bioavailable Sb shift to well-crystallized (hydr)oxides of Mn and residual fractions, and further reduced mobility and bioavailability Sb in soil. The sorption of ZrMn to Sb(III) and antimonate Sb(V) were affected by interfering ions, and to Sb(III) was a heterogeneous adsorption process. Spectroscopic characterization of XPS and FTIR suggested exchange between the hydroxyl groups and Sb was crucial in its retain and forming an electronegative inner-sphere mononuclear or binuclear bridging compound. The oxidation induced the transformation of Mn species in ZrMn, generated Mn(II) and Mn(III) exposing more reactive sites conducive to oxidation and adsorption, thus Mn oxides has a higher adsorption capacity for Sb(III). However, the Zr oxides of ZrMn presented adsorption rather than oxidation. The application of ZrMn could realize the dual effect of Sb oxidation detoxification and adsorption immobilization in soil, which provided references for Sb contaminated soil remediation.


Subject(s)
Antimony , Soil , Adsorption , Antimony/chemistry , Manganese , Manganese Compounds , Oxidation-Reduction , Oxides/chemistry , Soil/chemistry , Zirconium
2.
Chemosphere ; 293: 133453, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34971630

ABSTRACT

Resistant bacteria are potential natural materials for the bioremediation of soil metalloid pollution. A strain isolated from farmland soil chronically exposed to Sb was identified as K. aerogenes X with high antimonite [Sb(III)] tolerance and oxidation ability. The resistance mechanism of K. aerogenes X and its extracellular polymeric substances (EPS), antioxidant enzymes, and oxidation characteristics in Sb(III) stress were investigated in this study by stress incubation experiments and FTIR. The biotoxicity of Sb was limited by the binding of the organic compounds in EPS, and the anionic functional groups (e.g., amino, carboxyl and hydroxyl groups, etc.) present in the cell envelope were the components primarily responsible for the metalloid-binding capability of K. aerogenes X. The K. aerogenes X can oxidize Sb(III), and its metabolites induce changes in reactive oxygen species (ROS), catalase (CAT), total superoxide dismutase (SOD) and glutathione s-transferase (GSH-S) activity, indicating that the resistance mechanisms of K. aerogenes X are mediated by oxidative stress, EPS restriction and cell damage. Oxidation of Sb(III) is driven by interactions in intracellular oxidation, cell electron transport, extracellular metabolism including proteins and low molecular weight components (LMWs). LMWs (molecular weight <3 kDa) are the main driving factor of Sb(III) oxidation. In addition, Sb resistance genes arsA, arsB, arsC, arsD and acr3 and potential oxidation gene arsH were identified in K. aerogenes X. Owing to its natural origin, high tolerance and oxidation ability, K. aerogenes X could serve as a potential bioremediation material for the mitigation of Sb(III) in contaminated areas.


Subject(s)
Enterobacter aerogenes , Biodegradation, Environmental , Oxidation-Reduction , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...