Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 687
Filter
1.
Structure ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38823379

ABSTRACT

Carboxysomes are large self-assembled microcompartments that serve as the central machinery of a CO2-concentrating mechanism (CCM). Biogenesis of carboxysome requires the fine organization of thousands of individual proteins; however, the packaging pattern of internal RuBisCOs remains largely unknown. Here we purified the intact ß-carboxysomes from Synechococcus elongatus PCC 7942 and identified the protein components by mass spectrometry. Cryo-electron tomography combined with subtomogram averaging revealed the general organization pattern of internal RuBisCOs, in which the adjacent RuBisCOs are mainly arranged in three distinct manners: head-to-head, head-to-side, and side-by-side. The RuBisCOs in the outermost layer are regularly aligned along the shell, the majority of which directly interact with the shell. Moreover, statistical analysis enabled us to propose an ideal packaging model of RuBisCOs in the ß-carboxysome. These results provide new insights into the biogenesis of ß-carboxysomes and also advance our understanding of the efficient carbon fixation functionality of carboxysomes.

2.
Phytomedicine ; 130: 155743, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38824822

ABSTRACT

BACKGROUND: Insulin resistance (IR) is the central pathophysiological feature in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia. As the main active ingredient in Lithocarpus litseifolius [Hance] Chun, previous studies have shown that phlorizin (PHZ) can reduce insulin resistance in the liver. However, the effect of phlorizin on attenuating hepatic insulin resistance has not been fully investigated, and whether this effect is related to AMPK remains unclear. PURPOSE: The present study aimed to further investigate the effect of phlorizin on attenuating insulin resistance and the potential action mechanism. METHODS: Free fatty acids (FFA) were used to induce insulin resistance in HepG2 cells. The effects of phlorizin and FFA on cell viability were detected by MTT analysis. Glucose consumption, glycogen synthesis, intracellular malondialdehyde (MDA), superoxide dismutase (SOD), total cholesterol (TC), and triglyceride (TG) contents were quantified after phlorizin treatment. Glucose uptake and reactive oxygen species (ROS) levels in HepG2 cells were assayed by flow cytometry. Potential targets and signaling pathways for attenuating insulin resistance by phlorizin were predicted by network pharmacological analysis. Moreover, the expression levels of proteins related to the AMPK/PI3K/AKT signaling pathway were detected by western blot. RESULTS: Insulin resistance was successfully induced in HepG2 cells by co-treatment of 1 mM sodium oleate (OA) and 0.5 mM sodium palmitate (PA) for 24 h. Treatment with phlorizin promoted glucose consumption, glucose uptake, and glycogen synthesis and inhibited gluconeogenesis in IR-HepG2 cells. In addition, phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells. Network pharmacological analysis showed that AKT1 was the active target of phlorizin, and the PI3K/AKT signaling pathway may be the potential action mechanism of phlorizin. Furthermore, western blot results showed that phlorizin ameliorated FFA-induced insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. CONCLUSION: Phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells and ameliorated hepatic insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. Our study proved that phlorizin played a role in alleviating hepatic insulin resistance by activating AMPK, which provided experimental evidence for the use of phlorizin as a potential drug to improve insulin resistance.

3.
Mol Biol Rep ; 51(1): 622, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709309

ABSTRACT

Menopause is a normal physiological process accompanied by changes in various physiological states. The incidence of vascular calcification (VC) increases each year after menopause and is closely related to osteoporosis (OP). Although many studies have investigated the links between VC and OP, the interaction mechanism of the two under conditions of estrogen loss remains unclear. MicroRNAs (miRNAs), which are involved in epigenetic modification, play a critical role in estrogen-mediated mineralization. In the past several decades, miRNAs have been identified as biomarkers or therapeutic targets in diseases. Thus, we hypothesize that these small molecules can provide new diagnostic and therapeutic approaches. In this review, we summarize the close interactions between VC and OP and the role of miRNAs in their interplay.


Subject(s)
MicroRNAs , Postmenopause , Vascular Calcification , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Vascular Calcification/genetics , Vascular Calcification/metabolism , Postmenopause/genetics , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Estrogens/metabolism , Biomarkers/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Epigenesis, Genetic
4.
Transl Lung Cancer Res ; 13(4): 849-860, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38736498

ABSTRACT

Background: Resectable non-small cell lung cancer (NSCLC) patients have a high risk of recurrence. Multiple randomized controlled trials (RCTs) have shown that neoadjuvant chemo-immunotherapy brings new hope for these patients. The study aims to evaluate the safety, surgery-related outcomes and oncological outcomes for neoadjuvant chemo-immunotherapy in real-world setting with a large sample size and long-term follow-up. Methods: Patients with clinical stage IB-IIIB NSCLC who received neoadjuvant chemo-immunotherapy at two Chinese institutions were included in this retrospective cohort study. Surgical and oncological outcomes of the enrolled NSCLC patients were collected and analyzed. Results: There were 158 patients identified, of which 124 (78.5%) were at stage IIIA-IIIB and the remaining 34 (21.5%) were at stage IB-IIB. Forty-one patients (25.9%) received two cycles of neoadjuvant treatment, 80 (50.6%) had three cycles, and 37 (23.4%) had four cycles. Twenty-four patients (15.2%) experienced grade 3 or worse immune-related adverse events. The median interval time between the last neoadjuvant therapy and surgery was 37 [interquartile range (IQR), 31-43] days. Fifty-eight out of 96 (60.4%) central NSCLC patients who were expected to undergo complex surgery had the scope or the difficulty of operation reduced. Ninety-five (60.1%) patients achieved major pathologic response (MPR), including 62 (39.2%) patients with pathologic complete response (pCR). Multivariate regression analysis showed that no clinical factor other than programmed death-ligand 1 (PD-L1) expression was predictive of the pathological response. The median follow-up time from diagnosis was 27.1 months. MPR and pCR were significantly associated with improved progression-free survival (PFS) and overall survival (OS). Neither stage nor PD-L1 expression was significantly associated with long-term survival. Conclusions: The neoadjuvant chemo-immunotherapy is a feasible strategy for NSCLC with a favorable rate of pCR/MPR, modified resection and 2-year survival. No clinical factor other than PD-L1 expression was predictive of the pathological response. pCR/MPR may be effective surrogate endpoint for survival in NSCLC patients who received neoadjuvant chemo-immunotherapy.

5.
Plant Physiol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753307

ABSTRACT

Sweet osmanthus (Osmanthus fragrans) is famous in China for its flowers and contains four groups: Albus, Luteus, Aurantiacus, and Asiaticus. Understanding the relationships among these groups and the genetic mechanisms of flower color and aroma biosynthesis are of tremendous interest. In this study, we sequenced representative varieties from two of the four sweet osmanthus groups. Multi-omic and phylogenetic analyses of varieties from each of the four groups showed that Asiaticus split first within the species, followed by Aurantiacus and the sister groups Albus and Luteus. We show that the difference in flower color between Aurantiacus and the other three groups was caused by a 4-bp deletion in the promoter region of carotenoid cleavage dioxygenase 4 (OfCCD4) that leads to expression decrease. In addition, we identified 44 gene pairs exhibiting significant structural differences between the multi-seasonal flowering variety 'Rixianggui' in the Asiaticus group and other autumn flowering varieties. Through correlation analysis between intermediate products of aromatic components and gene expression, we identified eight genes associated with the linalool, α- and ß-ionone biosynthesis pathways. Overall, our study offers valuable genetic resources for sweet osmanthus, while also providing genetic clues for improving the flower color and multi-season flowering of osmanthus and other flowers.

6.
J Magn Reson Imaging ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767272

ABSTRACT

BACKGROUND: Cognitive impairment is commonly observed in hydrocephalus patients. Ventricular enlargement compresses brain parenchyma, especially the white matter (WM). PURPOSE: To investigate whether the relationship between ventricular dilation and cognitive decline in hydrocephalus patients is mediated by WM alterations. STUDY TYPE: Retrospective. POPULATION: 51 communicating hydrocephalus patients (median age, 54 years), 50 obstructive hydrocephalus patients (median age, 49 years), and 53 control subjects (median age, 50 years). FIELD STRENGTH/SEQUENCE: Diffusion tensors imaging, 3D T1 BRAVO, 3D FIESTA, CUBE T2, and FLAIR sequences at 3T. ASSESSMENT: DTI parameters (skeletonized fractional anisotropy (FA), skeletonized mean diffusivity (MD), and peak width of skeletonized mean diffusivity p(PSMD)) were extracted using FSL software. Global, periventricular, and deep white matter hyperintensity (WMH) volumes, degree of ventricular enlargement (Evans index), and other conventional imaging markers (number of lacunes and perivascular spaces, intracranial and brain volume) were extracted using united imaging intelligence. Cognitive tests included Montreal cognitive assessment (MoCA), clock drawing test (CDT), and vocabulary fluency test (VFT). STATISTICAL TESTS: Multivariable linear regression analysis, mediation analyses, and dominance analysis. P-value <0.05 was considered significant. RESULTS: The degree of ventricular dilation, DTI parameters, and cognitive function scores were interrelated. The skeletonized FA values (ß = -0.0917, 95% confidence interval (CI): -0.205, -0.024) and normalized global WMH volume (ß = -0.0635, 95% CI: -0.13, -0.0005) together mediated 37.2% of the association between Evans index and MoCA. A comparable causal pathway was found for periventricular WMHs but not for deep WMHs. Dominance analysis indicated skeletonized FA values had a greater impact on cognition than WMH volume. The skeletonized FA values also mediated the association between Evans index and CDT (ß = -0.0897, 95% CI: -0.165, -0.026) and VFT (ß = -0.1589, 95% CI: -0.27, -0.083). CONCLUSION: WM alterations were causal mediators between ventricular dilation and cognitive decline in hydrocephalus patients. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.

7.
Commun Biol ; 7(1): 587, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755254

ABSTRACT

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Subject(s)
Antigen Presentation , Cytidine , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/pharmacology , Antigen Presentation/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female
8.
Nanoscale ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809107

ABSTRACT

A better understanding of the molecular and cellular events involved in the inflammation process has opened novel perspectives in the treatment of inflammatory diseases, particularly through the development of well-designed nanomedicines. Here we describe the design of a novel class of anti-inflammatory nanomedicine (denoted as Au@MIL) synthesized through a one-pot, cost-effective and green approach by coupling a benchmark mesoporous iron(III) carboxylate metal organic framework (MOF) (i.e. MIL-100(Fe)) and glutathionate protected gold nanoclusters (i.e. Au25SG18 NCs). This nano-carrier exhibits low toxicity and excellent colloidal stability combined with the high loading capacity of the glucocorticoid dexamethasone phosphate (DexP) whose pH-dependent delivery was observed. The drug loaded Au@MIL nanocarrier shows high anti-inflammatory activity due to its capacity to specifically hinder inflammatory cell growth, scavenge intracellular reactive oxygen species (ROS) and downregulate pro-inflammatory cytokine secretion. In addition, this formulation has the capacity to inhibit the Toll-like receptor (TLR) signaling cascade namely the nuclear factor kappa B (NF-κB) and the interferon regulatory factor (IRF) pathways. This not only provides a new avenue for the nanotherapy of inflammatory diseases but also enhances our fundamental knowledge of the role of nanoMOF based nanomedicine in the regulation of innate immune signaling.

9.
Sci Total Environ ; 931: 172923, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701929

ABSTRACT

The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ15N and δ18O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate­nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.

10.
MycoKeys ; 105: 203-216, 2024.
Article in English | MEDLINE | ID: mdl-38818111

ABSTRACT

In the present study, two new Conidiobolus s.s. species were described relying on the morphological studies and phylogenetic analysis utilizing nuclear large subunit of rDNA (nucLSU), mitochondrial small subunit of rDNA (mtSSU), and elongation-factor-like gene (EFL) sequences. Conidiobolusjiangxiensissp. nov. is distinguished by its short primary conidiophores, a feature not commonly observed in other Conidiobolus s.s. species. Conversely, Conidiobolusmarcoconidiussp. nov. is characterized by larger primary conidia and the emergence of 2-5 secondary conidia from each branched secondary conidiophores. Additionally, the taxonomic reassessment of C.polyspermus confirms its distinct status within the genus Conidiobolus s.s. Moreover, molecular analyses, incorporating the nucLSU, mtSSU, and EFL sequences, provide robust support for the phylogenetic placement of the two newly described species and the taxonomic identity of C.polyspermus. This investigation contributes valuable insights into the species diversity of Conidiobolaceae in China, enhancing our understanding of the taxonomy within this fungal family.

11.
Anal Chem ; 96(21): 8474-8483, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739687

ABSTRACT

Ultraviolet photodissociation (UVPD) mass spectrometry unlocks insights into the protein structure and sequence through fragmentation patterns. While N- and C-terminal fragments are traditionally relied upon, this work highlights the critical role of internal fragments in achieving near-complete sequencing of protein. Previous limitations of internal fragment utilization, owing to their abundance and potential for random matching, are addressed here with the development of Panda-UV, a novel software tool combining spectral calibration, and Pearson correlation coefficient scoring for confident fragment assignment. Panda-UV showcases its power through comprehensive benchmarks on three model proteins. The inclusion of internal fragments boosts identified fragment numbers by 26% and enhances average protein sequence coverage to a remarkable 93% for intact proteins, unlocking the hidden region of the largest protein carbonic anhydrase II in model proteins. Notably, an average of 65% of internal fragments can be identified in multiple replicates, demonstrating the high confidence of the fragments Panda-UV provided. Finally, the sequence coverages of mAb subunits can be increased up to 86% and the complementary determining regions (CDRs) are nearly completely sequenced in a single experiment. The source codes of Panda-UV are available at https://github.com/PHOENIXcenter/Panda-UV.


Subject(s)
Mass Spectrometry , Software , Ultraviolet Rays , Proteins/chemistry , Proteins/analysis , Amino Acid Sequence , Animals
12.
Front Plant Sci ; 15: 1384246, 2024.
Article in English | MEDLINE | ID: mdl-38601316

ABSTRACT

Introduction: Salt tolerance during seed germination is an important trait for direct seeding and low-cost rice production. Nevertheless, it is still not clear how seed germination under salt stress is regulated genetically. Methods: In this study, genome-wide association studies (GWAS) were performed to decipher the genetic basis of seed germination under salt stress using 541 rice varieties collected worldwide. Results and discussion: Three quantitative trait loci (QTLs) were identified including qGRG3-1 on chromosome 3, qGRG3-2 on chromosome 5, and qGRG4 on chromosome 4. Assessment of candidate genes in these loci for their responses to salt stress identified a TATA modulatory factor (OsTMF) in qGRG3-2. The expression of OsTMF was up-regulated in both roots and shoots after exposure to salt stress, and OsTMF knockout mutants exhibited delayed seed germination under salt stress. Haplotype analysis showed that rice varieties carrying OsTMF-Hap2 displayed elevated salt tolerance during seed germination. These results provide important knowledge and resources to improve rice seed germination under salt stress in the future.

13.
Phys Chem Chem Phys ; 26(16): 12289-12298, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38597718

ABSTRACT

The development of density functional approximations stands at a crossroads: while machine-learned functionals show potential to surpass their human-designed counterparts, their extrapolation to unseen chemistry lags behind. Here we assess how well the recent Deep Mind 21 (DM21) machine-learned functional [Science, 2021, 374, 1385-1389], trained on main-group chemistry, extrapolates to transition metal chemistry (TMC). We show that DM21 demonstrates comparable or occasionally superior accuracy to B3LYP for TMC, but consistently struggles with achieving self-consistent field convergence for TMC molecules. We also compare main-group and TMC machine-learning DM21 features to shed light on DM21's challenges in TMC. We finally propose strategies to overcome limitations in the extrapolative capabilities of machine-learned functionals in TMC.

14.
Stress Biol ; 4(1): 24, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668992

ABSTRACT

As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.

15.
Cell Rep ; 43(4): 114111, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38615319

ABSTRACT

The efficacy of immunotherapy against colorectal cancer (CRC) is impaired by insufficient immune cell recruitment into the tumor microenvironment. Our study shows that targeting circDNA2v, a circular RNA commonly overexpressed in CRC, can be exploited to elicit cytotoxic T cell recruitment. circDNA2v functions through binding to IGF2BP3, preventing its ubiquitination, and prolonging the IGF2BP3 half-life, which in turn sustains mRNA levels of the protooncogene c-Myc. Targeting circDNA2v by gene silencing downregulates c-Myc to concordantly induce tumor cell senescence and the release of proinflammatory mediators. Production of CXCL10 and interleukin-9 by CRC cells is elicited through JAK-STAT1 signaling, in turn promoting the chemotactic and cytolytic activities of CD8+ T cells. Clinical evidence associates increased circDNA2v expression in CRC tissues with reductions in CD8+ T cell infiltration and worse outcomes. The regulatory relationship between circDNA2v, cellular senescence, and tumor-infiltrating lymphocytes thus provides a rational approach for improving immunotherapy in CRC.


Subject(s)
Cellular Senescence , Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Signal Transduction , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/immunology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , STAT1 Transcription Factor/metabolism
16.
J Agric Food Chem ; 72(17): 10089-10096, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626386

ABSTRACT

Lactoferrin (LTF) has diverse biological activities and is widely used in functional foods and active additives. Nevertheless, evaluating the proteoform heterogeneity, conformational stability, and activity of LTF remains challenging during its production and storage processes. In this study, we describe the implementation of native mass spectrometry (nMS), glycoproteomics, and an antimicrobial activity assay to assess the quality of LTF. We systematically characterize the purity, glycosylation heterogeneity, conformation, and thermal stability of LTF samples from different sources and transient high-temperature treatments by using nMS and glycoproteomics. Meanwhile, the nMS peak intensity and antimicrobial activity of LTF samples after heat treatment decreased significantly, and the two values were positively correlated. The nMS results provide essential molecular insights into the conformational stability and glycosylation heterogeneity of different LTF samples. Our results underscore the great potential of nMS for LTF quality control and activity evaluation in industrial production.


Subject(s)
Lactoferrin , Mass Spectrometry , Lactoferrin/chemistry , Lactoferrin/metabolism , Glycosylation , Protein Stability , Animals , Protein Conformation , Cattle , Hot Temperature
17.
Diseases ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667525

ABSTRACT

The circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variant presents an ongoing challenge for surveillance and detection. It is important to establish an assay for SARS-CoV-2 antibodies in vaccinated individuals. Numerous studies have demonstrated that binding antibodies (such as S-IgG and N-IgG) and neutralizing antibodies (Nabs) can be detected in vaccinated individuals. However, it is still unclear how to evaluate the consistency and correlation between binding antibodies and Nabs induced by inactivated SARS-CoV-2 vaccines. In this study, serum samples from humans, rhesus macaques, and hamsters immunized with inactivated SARS-CoV-2 vaccines were analyzed for S-IgG, N-IgG, and Nabs. The results showed that the titer and seroconversion rate of S-IgG were significantly higher than those of N-IgG. The correlation between S-IgG and Nabs was higher compared to that of N-IgG. Based on this analysis, we further investigated the titer thresholds of S-IgG and N-IgG in predicting the seroconversion of Nabs. According to the threshold, we can quickly determine the positive and negative effects of the SARS-CoV-2 variant neutralizing antibody in individuals. These findings suggest that the S-IgG antibody is a better supplement to and confirmation of SARS-CoV-2 vaccine immunization.

18.
Water Res ; 255: 121477, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38520778

ABSTRACT

Iodinated X-ray contrast media (ICM) are ubiquitously present in water sources and challenging to eliminate using conventional processes, posing a significant risk to aquatic ecosystems. Ultraviolet light-emitting diodes (UV-LED) emerge as a promising technology for transforming micropollutants in water, boasting advantages such as diverse wavelengths, elimination of chemical additives, and no induction of microorganisms' resistance to disinfectants. The research reveals that iohexol (IOX) degradation escalates as UV wavelength decreases, attributed to enhanced photon utilization efficiency. Pseudo-first-order rate constants (kobs) were determined as 3.70, 2.60, 1.31 and 0.65 cm2 J-1 at UV-LED wavelengths of 255, 265, 275 and 285 nm, respectively. The optical properties of dissolved organic matter (DOM) and anions undeniably influence the UV-LED photolysis process through photon competition and the generation of reactive substances. The influence of Cl- on IOX degradation was insignificant at UV-LED 255, but it promoted IOX degradation at 265, 275 and 285 nm. IOX degradation was accelerated by ClO2-, NO3-and HA due to the formation of various reactive species. In the presence of NO3-, the kobs of IOX followed the order: 265 > 255 > 275 > 285 nm. Photosensitizers altered the spectral dependence of IOX, and the intermediate photoactivity products were detected using electron spin resonance. The transformation pathways of IOX were determined through density functional theory calculations and experiments. Disinfection by-products (DBPs) yields of IOX during UV-LED irradiation decreased as the wavelength increased: 255 > 265 > 275 > 285 nm. The cytotoxicity index value decreased as the UV-LED wavelength increased from 255 to 285 nm. These findings are crucial for selecting the most efficient wavelength for UV-LED degradation of ICM and will benefit future water purification design.

19.
Nat Biotechnol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459338

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.

20.
J Am Chem Soc ; 146(13): 8832-8838, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507251

ABSTRACT

How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.


Subject(s)
Escherichia coli , Protein Unfolding , Escherichia coli/metabolism , NADP/metabolism , Protein Stability , Mutation , Mass Spectrometry , Tetrahydrofolate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...