Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(22): 226503, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877957

ABSTRACT

We present experimental evidence that a heavy Fermi surface consisting of itinerant, charge-neutral spinons underpins both heavy-fermion-strange-metal (without f electrons) and quantum-spin-liquid states in the 4d-electron trimer lattice, Ba_{4}Nb_{1-x}Ru_{3+x}O_{12}(|x|<0.20). These two exotic states both exhibit an extraordinarily large entropy, a linear heat capacity extending into the milli-Kelvin regime, a linear thermal conductivity at low temperatures, and separation of charges and spins. Furthermore, the insulating spin liquid is a much better thermal conductor than the heavy-fermion-strange-metal that separately is observed to strongly violate the Wiedemann-Franz law. We propose that at the heart of this 4d system is a universal, heavy spinon Fermi surface that provides a unified framework for explaining the exotic phenomena observed throughout the entire series. The control of such exotic ground states provided by variable Nb concentration offers a new paradigm for studies of correlated quantum matter.

2.
Nat Commun ; 14(1): 8258, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38086872

ABSTRACT

Ultrafast laser excitation provides a means to transiently realize long-range ordered electronic states of matter that are hidden in thermal equilibrium. Recently, this approach has unveiled a variety of thermally inaccessible ordered states in strongly correlated materials, including charge density wave, ferroelectric, magnetic, and intertwined charge-orbital ordered states. However, more exotic hidden states exhibiting higher multipolar ordering remain elusive owing to the challenge of directly manipulating and detecting them with light. Here we demonstrate a method to induce a dynamical transition from a thermally allowed to a thermally forbidden spin-orbit entangled quadrupolar ordered state in Ca2RuO4 by coherently exciting a phonon that is strongly coupled to the order parameter. Combining probe photon energy-resolved coherent phonon spectroscopy measurements with model Hamiltonian calculations, we show that the dynamical transition is manifested through anomalies in the temperature, pump excitation fluence, and probe photon energy dependence of the strongly coupled phonon. With this procedure, we introduce a general pathway to uncover hidden multipolar ordered states and to control their re-orientation on ultrashort timescales.

3.
Phys Rev Lett ; 130(18): 186902, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37204876

ABSTRACT

Upon intense femtosecond photoexcitation, a many-body system can undergo a phase transition through a nonequilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photoinduced phase transition in Ca_{3}Ru_{2}O_{7} and show that mesoscale inhomogeneity profoundly influences the transition dynamics. We observe a marked slowing down of the characteristic time τ that quantifies the transition between two structures. τ evolves nonmonotonically as a function of photoexcitation fluence, rising from below 200 fs to ∼1.4 ps, then falling again to below 200 fs. To account for the observed behavior, we perform a bootstrap percolation simulation that demonstrates how local structural interactions govern the transition kinetics. Our work highlights the importance of percolating mesoscale inhomogeneity in the dynamics of photoinduced phase transitions and provides a model that may be useful for understanding such transitions more broadly.

4.
Nature ; 611(7936): 467-472, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36224383

ABSTRACT

Colossal magnetoresistance (CMR) is an extraordinary enhancement of the electrical conductivity in the presence of a magnetic field. It is conventionally associated with a field-induced spin polarization that drastically reduces spin scattering and electric resistance. Ferrimagnetic Mn3Si2Te6 is an intriguing exception to this rule: it exhibits a seven-order-of-magnitude reduction in ab plane resistivity that occurs only when a magnetic polarization is avoided1,2. Here, we report an exotic quantum state that is driven by ab plane chiral orbital currents (COC) flowing along edges of MnTe6 octahedra. The c axis orbital moments of ab plane COC couple to the ferrimagnetic Mn spins to drastically increase the ab plane conductivity (CMR) when an external magnetic field is aligned along the magnetic hard c axis. Consequently, COC-driven CMR is highly susceptible to small direct currents exceeding a critical threshold, and can induce a time-dependent, bistable switching that mimics a first-order 'melting transition' that is a hallmark of the COC state. The demonstrated current-control of COC-enabled CMR offers a new paradigm for quantum technologies.

5.
Phys Rev Lett ; 128(18): 187402, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594087

ABSTRACT

The fate of a Mott insulator under strong low frequency optical driving conditions is a fundamental problem in quantum many-body dynamics. Using ultrafast broadband optical spectroscopy, we measured the transient electronic structure and charge dynamics of an off-resonantly pumped Mott insulator Ca_{2}RuO_{4}. We observe coherent bandwidth renormalization and nonlinear doublon-holon pair production occurring in rapid succession within a sub-100-fs pump pulse duration. By sweeping the electric field amplitude, we demonstrate continuous bandwidth tuning and a Keldysh crossover from a multiphoton absorption to quantum tunneling dominated pair production regime. Our results provide a procedure to control coherent and nonlinear heating processes in Mott insulators, facilitating the discovery of novel out-of-equilibrium phenomena in strongly correlated systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...