Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(16)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36796103

ABSTRACT

Dynamic properties of Majorana bound states (MBSs) coupled double-quantum-dot (DQD) interferometer threaded with ac magnetic flux are investigated, and the time-averaged thermal current formulas are derived. Photon-assisted local and nonlocal Andreev reflections contribute efficiently to the charge and heat transports. The modifications of source-drain electric, electric-thermal, thermal conductances (G,ξ,κe), Seebeck coefficient (Sc), and thermoelectric figure of merit (ZT) versus AB phase have been calculated numerically. These coefficients exhibit the shift of oscillation period from 2πto 4πdistinctly due to attaching MBSs. The applied ac flux enhances the magnitudes ofG,ξ,κeobviously, and the detailed enhancing behaviors are relevant to the energy levels of DQD. The enhancements ofScandZTare generated due to the coupling of MBSs, while the application of ac flux suppresses the resonant oscillations. The investigation provides a clue for detecting MBSs through measuring the photon-assistedScandZTversus AB phase oscillations.

2.
RSC Adv ; 10(27): 15702-15706, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35493677

ABSTRACT

Band-gap engineering of molybdenum disulfide (MoS2) by introducing vacancies is of particular interest owing to the potential optoelectronic applications. In this work, systematic density functional theory (DFT) calculations were carried out for few-layered 3R-MoS2 with different concentrations of S vacancies. All results revealed that the defect energy levels introduced on both sides of the Fermi level formed an intermediate band in the band gap. Both the edges of the intrinsic and intermediate bands of the structures with the same type of vacancies were generally closer to the Fermi level, and the gaps decreased as the number of layers increased from 2 to 4. The preferentially formed S vacancies at the top layer and the transition of defect types from point to line led to similar indirect band gaps for 2- and 4-layered 3R-MoS2 with a low bulk concentration (around 5%) of S vacancies. This is different from most reported results about transition metal dichalcogenide (TMD) materials that the indirect band gap decreases as the number of layers increases and the low concentrations of vacancies show negligible influence on the band gap value.

3.
J Nanosci Nanotechnol ; 18(3): 1799-1803, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29448662

ABSTRACT

The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.


Subject(s)
Amino Acids , Gold , Ligands , Nanocomposites , Peptides
4.
Sci Bull (Beijing) ; 63(6): 349-355, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-36658871

ABSTRACT

The epidermal growth factor receptor (EGFR) has become an important target protein in anticancer drug development. Meanwhile, peptide-Au cluster has been proposed as potential targeted nano-drug assembled by targeting peptide. Here, we designed and synthesized a novel peptide-Au cluster as Au10Peptide5 to target to EGFR. We found Au10Peptide5 could target to the natural binding sites of all EGFRs at membrane in both active and inactive states by molecular simulations. Its targeted ability was further verified by the co-localization and blocking experiments. We also study the configuration modifications of both active and inactive EGFRs after binding by Au10Peptide5. For active EGFR, the absorbed Au10Peptide5 might replace the natural ligand in EGFR endocytosis process. Then, the peptide-Au cluster in endochylema could inhibit the cancer relating enzyme activity including thioredoxin reductase1 (TrxR1) and induce the oxidative stress mediated apoptosis in tumor cells. For inactive EGFR, it was retained in inactive state by Au10Peptide5 binding to inhibit dimerization of EGFR for anticancer. Both pathways might be applied in anticancer drug development based on the theoretical and experimental study here.

5.
J Phys Condens Matter ; 26(31): 315011, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25016999

ABSTRACT

We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green's function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ϵ(M) increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.

SELECTION OF CITATIONS
SEARCH DETAIL
...