Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 39(8): 3729-3735, 2018 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29998680

ABSTRACT

A magnetic reed biochar (MBC) was fabricated through chemical coprecipitation first and subsequent pyrolysis of reed stalk powder precipitated with Fe2+/Fe3+ at 873.15 K. The structure and properties of the MBC were characterized using SEM, BET, FTIR, and VSM. Adsorption experiments were carried out to investigate the adsorption behaviors and mechanisms of ciprofloxacin (CIP) and ofloxacin (OFL) onto the MBC. The MBC possessed roughness and pores within its structure and contained a large amount of oxygen-containing functional groups on the surface. The BET surface area of the MBC was 254.6 m2·g-1, and the total pore volume was 0.257 cm3·g-1, thus the MBC exhibited a relatively high porosity. The adsorption process was found to be pH and temperature dependent. The relative contributions of adsorbate species (cations, zwitterions, and anions) to overall adsorption varied for different pH values. Thermodynamic parameters indicated that the CIP and OFL adsorption onto MBC was a spontaneous, endothermic, and entropy-increasing process. Kinetics and isotherm data of CIP and OFL adsorption onto MBC were well depicted by the pseudo-second-order model and the Langmuir model. The equilibrium adsorption capacities of CIP and OFL onto MBC were 27.84 mg·g-1 and 22.00 mg·g-1, respectively. Pore-filling effects, π-π interaction between electron donors and acceptors, hydrogen bonding formation, hydrophobic interaction, and electrostatic interaction may be important mechanisms for CIP and OFL adsorption onto the MBC.


Subject(s)
Charcoal , Ciprofloxacin/isolation & purification , Ofloxacin/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...