Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Psychol Res ; 88(1): 167-186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37083875

ABSTRACT

People can use the constant target-heading (CTH) strategy or the constant bearing (CB) strategy to guide their locomotor interception. But it is still unclear whether people can learn new interception behavior. Here, we investigated how people learn to adjust their steering to intercept targets faster. Participants steered a car to intercept a moving target in a virtual environment similar to a natural open field. Their baseline interceptions were better accounted for by the CTH strategy. After five learning sessions across multiple days, in which participants received feedback about their interception durations, they adopted a two-stage control: a quick initial burst of turning accompanied by an increase of the target-heading angle during early interception was followed by significantly less turning with small changes in target-heading angle during late interception. The target's bearing angle did not only show this two-stage pattern but also changed comparatively little during late interception, leaving it unclear which strategy participants had adopted. In a following test session, the two-stage pattern of participants' turning adjustment and the target-heading angle transferred to new target conditions and a new environment without visual information about an allocentric reference frame, which should preclude participants from using the CB strategy. Indeed, the pattern of the target's bearing angle did not transfer to all the new conditions. These results suggest that participants learned a two-stage control for faster interception: they learned to quickly increase the target-heading angle during early interception and subsequently follow the CTH strategy during late interception.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Learning , Nonoxynol
2.
Q J Exp Psychol (Hove) ; 74(10): 1686-1696, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33749396

ABSTRACT

Which strategy people use to guide locomotor interception remains unclear despite considerable research and the importance of an answer with ramification into the heuristics and biases debate. Because the constant bearing (CB) strategy corresponds to the target-heading (CTH) strategy with an additional constraint, these two strategies can be confounded experimentally. But, the two strategies are distinct in the information they require: while the CTH strategy only requires access to the relative angle between the direction of motion and the target, the CB strategy requires access to a stable allocentric reference frame. Here, we manipulated the visual information about allocentric reference frames in three virtual environments and asked participants to steer a car to intercept a moving target. Participants' interception paths showed different degrees of curvature and their target-heading angles were approximately constant, consistent with the CTH strategy. By contrast, the target's bearing angle continuously changed in all participants except one. This particular participant produced linear interception paths with little change in the target's bearing angle, seemingly consistent with both strategies. This participant continued this pattern of steering even in the environment without any visual information about allocentric reference frames. Therefore, this pattern of steering is attributed to the CTH strategy rather than the CB strategy. The overall results add important evidence for the conclusion that locomotor interception is better accounted for by the CTH strategy and that experimentally observing a straight interception trajectory with a CB angle is not sufficient evidence for the CB strategy.


Subject(s)
Automobiles , Motion Perception , Heuristics , Humans , Motion , Psychomotor Performance
3.
J Vis ; 19(14): 11, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31830240

ABSTRACT

The visually guided interception of a moving target is a fundamental visuomotor task that humans can do with ease. But how humans carry out this task is still unclear despite numerous empirical investigations. Measurements of angular variables during human interception have suggested three possible strategies: the pursuit strategy, the constant bearing angle strategy, and the constant target-heading strategy. Here, we review previous experimental paradigms and show that some of them do not allow one to distinguish among the three strategies. Based on this analysis, we devised a virtual driving task that allows investigating which of the three strategies best describes human interception. Crucially, we measured participants' steering, head, and gaze directions over time for three different target velocities. Subjects initially aligned head and gaze in the direction of the car's heading. When the target appeared, subjects centered their gaze on the target, pointed their head slightly off the heading direction toward the target, and maintained an approximately constant target-heading angle, whose magnitude varied across participants, while the target's bearing angle continuously changed. With a second condition, in which the target was partially occluded, we investigated several alternative hypotheses about participants' visual strategies. Overall, the results suggest that interceptive steering is best described by the constant target-heading strategy and that gaze and head are coordinated to continuously acquire visual information to achieve successful interception.


Subject(s)
Automobile Driving , Automobiles , Motion Perception , Psychomotor Performance , Vision, Ocular , Adolescent , Adult , Eye Movements , Female , Head Movements , Humans , Male , Young Adult
4.
J Vis ; 17(5): 12, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28538992

ABSTRACT

When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.


Subject(s)
Motion Perception/physiology , Psychomotor Performance/physiology , Adult , Female , Humans , Male , Walking/physiology , Young Adult
5.
Vision Res ; 110(Pt B): 190-202, 2015 May.
Article in English | MEDLINE | ID: mdl-25454700

ABSTRACT

Two general approaches to the visual control of action have emerged in last few decades, known as the on-line and model-based approaches. The key difference between them is whether action is controlled by current visual information or on the basis of an internal world model. In this paper, we evaluate three hypotheses: strong on-line control, strong model-based control, and a hybrid solution that combines on-line control with weak off-line strategies. We review experimental research on the control of locomotion and manual actions, which indicates that (a) an internal world model is neither sufficient nor necessary to control action at normal levels of performance; (b) current visual information is necessary and sufficient to control action at normal levels; and (c) under certain conditions (e.g. occlusion) action is controlled by less accurate, simple strategies such as heuristics, visual-motor mappings, or spatial memory. We conclude that the strong model-based hypothesis is not sustainable. Action is normally controlled on-line when current information is available, consistent with the strong on-line control hypothesis. In exceptional circumstances, action is controlled by weak, context-specific, off-line strategies. This hybrid solution is comprehensive, parsimonious, and able to account for a variety of tasks under a range of visual conditions.


Subject(s)
Models, Neurological , Models, Psychological , Movement/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Humans , Learning/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...