Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Environ Manage ; 317: 115362, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35642820

ABSTRACT

Sewage treatment plants are an essential source of antibiotics, antibiotic resistance determinants, and bacteria in environmental waters. However, it is still unclear whether they can maintain a relatively stable relationship in wastewater and environmental waters. This study analyzed the removal capacity of the above three pollutants in the sewage treatment plant in summer and their impact on environmental waters, and then examines the relationship between the three contaminants in the wastewater and environmental waters in summer and winter based on our previous study. The results found that the removal capacity of bacteria in summer was poor, the concentration of fluoroquinolone in the effluent was higher than that in influent, and the abundance of intI1, tetW, qnrB, and ermB increased after wastewater treatment. Proteobacteria and Bacteroides were the main bacteria that constitute the correlation network between bacteria, and they existed stably in summer and winter. However, fluoroquinolones occupied a significant position in the determinant network of antibiotics and antibiotic resistance in summer and winter. There are fewer correlation between antibiotics and antibiotics resistance determinants in winter. Interestingly, the relationship between bacteria, antibiotics, and antibiotic resistance determinants was a mainly positive correlation in summer and negative correlation in winter. This study analyzed the relationship between bacteria, antibiotics, and antibiotic resistance determinants that were stable in the wastewater and environmental waters and pointed out the direction for subsequent targeted seasonal control of novel pollutants in wastewater and environmental waters.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial , Genes, Bacterial , Seasons , Sewage/microbiology , Wastewater/analysis , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
2.
Huan Jing Ke Xue ; 43(3): 1384-1393, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258202

ABSTRACT

The concentration levels of 39 antibiotics, including sulfonamides (SAs), quinolones (QUs), tetracyclines (TCs), macrolides (MLs), and penicillins (PLs), in the surface water of Luoma Lake, and its main inflow rivers were analyzed using SPE-UPLC-MS/MS. The contribution rates of pollution of major rivers entering the lake were analyzed, and the potential ecological and health risks of antibiotics were assessed. The results showed that ρ(antibiotics)in 42 sampling sites was between 30.10 ng·L-1 and 582.37 ng·L-1, and a total of four classes of 23 antibiotics were detected. Among them, the average detection concentration of enrofloxacin (ERX) was the highest (88.05 ng·L-1), and the detection rate of lincomycin (LIN) was the highest (100%). The average concentration of antibiotics in the northern region of Luoma Lake was higher than that in the south, and among the two main rivers entering the lake, Yihe River was the main river contributing to the pollution of antibiotics in Luoma Lake, with a contribution rate of 53.91%. The results of risk assessment showed that ERX had the largest risk quotient. For the cumulative risk quotient (RQcum), RQcum of L6, R30, R31, R32, R33, and R42 was between 0.1 and 1, which is considered medium risk, and RQcum of other points was>1, which is considered high risk. The health risk assessment of 11 antibiotics showed that the health risk quotient (RQH) of adults and children ranged from 4.16×10-6 to 2.46×10-3, and there was no health risk to the human body.


Subject(s)
Rivers , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Child , China , Chromatography, Liquid , Environmental Monitoring , Humans , Lakes , Risk Assessment , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
3.
Environ Int ; 140: 105750, 2020 07.
Article in English | MEDLINE | ID: mdl-32361124

ABSTRACT

Coexposure of MPs and other contaminants adsorbed from the environment has raised many attentions, but the understanding of the combined effects of MPs and plastic additives are limited. Butylated hydroxyanisole (BHA), a widely used synthetic phenolic antioxidant in plastics, has gained high concerns due to their unintended environmental release and potential threat to aquatic organisms. This study was conducted to reveal the influences of MPs on the bioaccumulation and developmental toxicity of BHA in zebrafish larvae. As a result, MPs promoted the accumulation of BHA in zebrafish larvae and enhanced the toxicity of BHA in larvae development manifested by reduced hatching rates, increased malformation rates and decreased calcified vertebrae. Although the concentration of MPs was not sufficient to cause obvious developmental toxicity, the impacts of MPs on thyroid hormones status might contribute to the aggravated join toxicity. The metabolomic mechanism was revealed to be that the coexposure of BHA and MPs affected the development of zebrafish larvae via disturbing the metabolism of arachidonic acid, glycerophospholipid, and lipids. Our results emphasized that MPs, even at the nontoxic concentrations, in combination with additives caused health risk that should not be ignored.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Antioxidants , Microplastics , Plastics , Thyroid Gland , Water Pollutants, Chemical/toxicity
4.
J Hazard Mater ; 384: 121489, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31704116

ABSTRACT

Concerns have been raised regarding the ingestion of microplastics (MPs) by numerous organisms including humans. However, no efficient and standardized methods are available for extracting MPs from feces. In this study, we introduce a novel approach with high digestion efficiency that involves using Fenton's reagent and nitric acid to remove feces solids. Firstly, Fenton's reagent was used to degrade small solids and decompose large solids into small pieces. Secondly, nitric acid was used to digest the remaining solids and filters. Furthermore, absolute ethyl alcohol was used to remove the mineral residues wrapped on the plastic surfaces and disperse MPs. By using this method, 97.78 % MPs can be recovered from human and chicken feces, and no significant changes were observed in the physical and Raman spectral properties of different polymer types of MPs. This method has also been verified by extracting MPs from field feces. Overall, the proposed method can efficiently digest feces solids and extract MPs with higher recovery rate, less intermediate steps and less damage, which can serve as an economical and feasible method for the detection of MPs in the feces of different species.


Subject(s)
Feces , Microplastics/isolation & purification , Animals , Chickens , Humans , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...