Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 10(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30961118

ABSTRACT

Arginine-Glycine-Aspartate (RGD) tripeptide can promote cell adhesion when present in the amino acid of proteins such as fibronectin. In order to demonstrate the bioactivity of an RGD-containing silk protein, a gene encoding the RGD motif-containing peptide GSGAGGRGDGGYGSGSS (⁻RGD⁻) derived from nonmulberry silk was designed and cloned, then multimerised and inserted into a commercial pGEX expression vector for recombinant expression of (⁻RGD⁻)n peptides. Herein, we focus on two glutathione-S-transferase (GST)-tagged fusion proteins, GST⁻(⁻RGD⁻)4 and GST⁻(⁻RGD⁻)8, which were expressed in Escherichia coli BL21, purified by GST affinity chromatography, and analyzed with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MS). Target peptides (⁻RGD⁻)4 and (⁻RGD⁻)8 (6.03 and 11.5 kDa) were cleaved from the GST-tag by thrombin digestion, as verified with MS and SDS-PAGE. Isoelectric point analysis confirmed that target peptides were expressed and released in accordance with the original design. Target peptides self-assembled into a mainly α-helical structure, as determined by circular dichroism spectroscopy. Furthermore, (⁻RGD⁻)4 and (⁻RGD⁻)8 modified mulberry silk fibroin films were more effective for rapid cell adhesion, spreading and proliferative activity of L929 cells than some chemically synthesized RGD peptides modified and mulberry silk lacking the RGD motif.

2.
Biomed Mater Eng ; 24(6): 2057-64, 2014.
Article in English | MEDLINE | ID: mdl-25226902

ABSTRACT

In order to understand the relationship between sequences and biological functions of RGD-containing wild silkworm silk fibroin, it is important to purify the basic RGD-containing motif in large quantities. In this study, a gene monomer encoding RGD-contained motif GSGAGGRGDGGYGSGSS (-RGD-) derived from Antheraea pernyi (the same in Antheraea yamamai) was designed and cloned. (-RGD-)n in various degrees of polymerizations was obtained by gene monomer doubling-extension and expression. Two glutathione-S-transferase (GST)-tagged fusion proteins GST-(-RGD-)12 and GST-(-RGD-)24 were successfully expressed in Escherichia coli (E. coli) BL21. The fusion proteins were isolated and purified by GST affinity chromatography, and the polypeptides (-RGD-)12 and (-RGD-)24 were cleaved from GST fusion proteins by thrombin digestion. Two-dimensional electrophoresis and amino acid composition analysis were performed to confirm the identity of the engineered polypeptides. Results indicated that this technology reliably obtained expected polypeptides (-RGD-)n for future research on structure and functions.


Subject(s)
Escherichia coli/metabolism , Fibroins/chemistry , Fibroins/metabolism , Moths/metabolism , Oligopeptides/biosynthesis , Oligopeptides/chemistry , Protein Engineering/methods , Amino Acid Sequence , Animals , Cloning, Molecular/methods , Escherichia coli/genetics , Fibroins/genetics , Molecular Sequence Data , Moths/genetics , Oligopeptides/genetics
3.
Mater Sci Eng C Mater Biol Appl ; 34: 429-36, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24268279

ABSTRACT

Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23N and the Young's modulus was 0.2-0.3MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts.


Subject(s)
Biocompatible Materials/pharmacology , Fibroblasts/cytology , Fibroins/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Tissue Scaffolds/chemistry , Animals , Carbocyanines/metabolism , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , DNA/metabolism , Fibroblasts/drug effects , Fibroblasts/ultrastructure , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Staining and Labeling , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...