Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 15(17): e1900212, 2019 04.
Article in English | MEDLINE | ID: mdl-30941900

ABSTRACT

A multimodal cancer therapeutic nanoplatform is reported. It demonstrates a promising approach to synergistically regulating the tumor microenvironment. The combination of intracellular reactive oxygen species (ROS) generated by irradiation of photosensitizer and endoplasmic reticulum (ER) stress induced by 2-deoxy-glucose (2-DG) has a profound effect on necrotic or apoptotic cell death. Especially, targeting metabolic pathway by 2-DG is a promising strategy to promote the effect of photodynamic therapy and chemotherapy. The nanoplatform can readily release its cargoes inside cancer cells and combines the advantages of ROS-sensitive releasing chemotherapeutic drugs, upregulating apoptosis pathways under ER stress, light-induced generation of cytotoxic ROS, achieving tumor accumulation, and in vivo fluorescence imaging capability. This work highlights the importance of considering multiple intracellular stresses as design parameters for nanoscale functional materials in cell biology, immune response, as well as medical treatments of cancer, Alzheimer's disease, etc.


Subject(s)
Antineoplastic Agents/pharmacology , Deoxyglucose/pharmacology , Endoplasmic Reticulum Stress , Light , Tumor Microenvironment/drug effects , Apoptosis , Combined Modality Therapy , Humans , Kinetics , MCF-7 Cells , Nanomedicine , Necrosis , Phagocytosis , Photochemotherapy , Photosensitizing Agents/pharmacology , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...