Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968122

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Subject(s)
Single-Cell Analysis , Male , Humans , Single-Cell Analysis/methods , Animals , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Antigens, Surface/metabolism , Antigens, Surface/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/drug therapy , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/drug therapy , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
2.
NPJ Precis Oncol ; 8(1): 104, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760413

ABSTRACT

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.

3.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645034

ABSTRACT

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

4.
Br J Cancer ; 130(1): 53-62, 2024 01.
Article in English | MEDLINE | ID: mdl-37980367

ABSTRACT

BACKGROUND: CC-115, a dual mTORC1/2 and DNA-PK inhibitor, has promising antitumour activity when combined with androgen receptor (AR) inhibition in pre-clinical models. METHODS: Phase 1b multicentre trial evaluating enzalutamide with escalating doses of CC-115 in AR inhibitor-naive mCRPC patients (n = 41). Primary endpoints were safety and RP2D. Secondary endpoints included PSA response, time-to-PSA progression, and radiographic progression. RESULTS: Common adverse effects included rash (31.7% Grades 1-2 (Gr); 31.7% Gr 3), pruritis (43.9% Gr 1-2), diarrhoea (37% Gr 1-2), and hypertension (17% Gr 1-2; 9.8% Gr 3). CC-115 RP2D was 5 mg twice a day. In 40 evaluable patients, 80% achieved ≥50% reduction in PSA (PSA50), and 58% achieved ≥90% reduction in PSA (PSA90) by 12 weeks. Median time-to-PSA progression was 14.7 months and median rPFS was 22.1 months. Stratification by PI3K alterations demonstrated a non-statistically significant trend towards improved PSA50 response (PSA50 of 94% vs. 67%, p = 0.08). Exploratory pre-clinical analysis suggested CC-115 inhibited mTOR pathway strongly, but may be insufficient to inhibit DNA-PK at RP2D. CONCLUSIONS: The combination of enzalutamide and CC-115 was well tolerated. A non-statistically significant trend towards improved PSA response was observed in patients harbouring PI3K pathway alterations, suggesting potential predictive biomarkers of response to a PI3K/AKT/mTOR pathway inhibitor. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02833883.


Subject(s)
Benzamides , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Pyrazines , Triazoles , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostate-Specific Antigen/therapeutic use , Mechanistic Target of Rapamycin Complex 1 , Phosphatidylinositol 3-Kinases , Nitriles/therapeutic use , DNA/therapeutic use
5.
Sci Adv ; 9(14): eadc9446, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018402

ABSTRACT

The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Mice , Animals , Humans , Prostate/metabolism , Prostate/pathology , Tumor Suppressor Protein p53/metabolism , Prostatic Neoplasms/genetics , Transcription Factors/metabolism , Prostatic Intraepithelial Neoplasia/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-ets/genetics
6.
Eur Urol ; 83(2): 112-120, 2023 02.
Article in English | MEDLINE | ID: mdl-36123219

ABSTRACT

BACKGROUND: BRCA2 alterations predict for a response to poly-ADP-ribose polymerase inhibition in metastatic castration-resistant prostate cancer (mCRPC). However, detection is hindered by insufficient tumor tissue and low sensitivity of cell-free DNA for detecting copy number loss. OBJECTIVE: To evaluate the BRCA2 loss detection using single-cell, shallow whole-genome sequencing (sWGS) of circulating tumor cells (CTCs) in patients with mCRPC. DESIGN, SETTING, AND PARTICIPANTS: We analyzed CTC samples collected concurrently with tumor biopsies intended for clinical sequencing in patients with progressing mCRPC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Differences in proportions were evaluated using the chi-square test. Correlations between assays were analyzed in linear regression models. Associations between alterations and genomic instability were assessed on the single-cell level using mixed-effect negative binomial models. RESULTS AND LIMITATIONS: We identified 138 patients with concurrent CTC and biopsy samples. CTC sWGS generated copy number profiles in a similar proportion of patients to biopsy samples (83% vs 78%, p = 0.23), but was more effective than bone biopsies (79% vs 50%; p = 0.009). CTC sWGS detected BRCA2 loss in more patients than tissue at the ≥1 (42% vs 16%; p < 0.001) and ≥2 (27% vs 16%; p = 0.028) CTC thresholds. The overall prevalence of BRCA2 loss was not increased in CTCs using sample-level composite z scores (p = 0.4), but was significantly increased compared with a lower-than-expected prevalence in bone samples (21% vs 3%, p = 0.014). Positive/negative predictive values for CTC BRCA2 loss were 89%/96% using the ≥1 CTC threshold and 67%/92% using the composite z score. CTC BRCA2 loss was associated with higher genomic instability in univariate (1.4-fold large-scale transition difference, 95% confidence interval [CI]: 1.2-1.6; p < 0.001) and multivariable analysis (1.4-fold difference, 95% CI: 1.2-1.6; p < 0.001). CONCLUSIONS: Copy number profiles can reliably be generated using CTC sWGS, which detected a majority of tissue-confirmed BRCA2 loss and "CTC-only" losses. BRCA2 losses were supported by increases in genomic instability. PATIENT SUMMARY: Current testing strategies have limitations in their ability to detect BRCA2 loss, a relatively common alteration in prostate cancer that is used to identify patients who may benefit from targeted therapy. In this paper, we evaluated whether we could detect BRCA2 loss in individual tumor cells isolated from patient blood samples and found this method to be suitable for further analysis.


Subject(s)
Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , DNA Copy Number Variations , Biomarkers, Tumor/genetics , Genomic Instability , BRCA2 Protein/genetics
7.
Res Sq ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38196594

ABSTRACT

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors, and the identification of additional cell surface targets is necessary in order to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide novel insights into the patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development of cell surface targeting agents in CRPC.

8.
Science ; 377(6611): 1180-1191, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35981096

ABSTRACT

Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.


Subject(s)
Cell Plasticity , Drug Resistance, Neoplasm , ErbB Receptors , Janus Kinases , Prostatic Neoplasms , STAT Transcription Factors , Androgen Antagonists , Animals , Humans , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/genetics , Janus Kinases/metabolism , Male , Mice , Neoplasms, Experimental , Organoids , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
9.
J Urol ; 207(5): 1010-1019, 2022 05.
Article in English | MEDLINE | ID: mdl-35020444

ABSTRACT

PURPOSE: Patients with prostate cancer (PCa) treated with apalutamide frequently develop rash. We aim to characterize apalutamide-related dermatological adverse events (dAEs) and management. MATERIALS AND METHODS: We assessed 303 patients with PCa treated with apalutamide. DAE frequency and time to onset were calculated and clinicopathological features and management described. Associations between dAE occurrence and clinical trial participation, as well as abiraterone/prednisone exposure were detected using logistic regression models. RESULTS: Seventy-one (23.4%) patients had all-grade dAE occurring at a median of 77 (IQR: 30-135) days post-exposure. Twenty (6.6%) dAE-related therapy interruptions included: 8 (2.6%) with dose maintained on rechallenge, 7 (2.3%) with dose reduction and 5 (1.7%) with discontinuation. Common dAEs were maculopapular rashes (33.8%) and xerosis (32.4%). Seven (77.8%) of 9 histological analyses of skin biopsies supported a drug reaction. No significant differences in laboratory hematological, hepatic and renal function were detected between dAE and no dAE cohorts. Most treated grade 1/2 dAEs (29, 40.8%) required topical steroids (14, 19.7%); few required oral steroids (3, 4.2%) ± oral antihistamines. Most grade 3 dAEs (8, 11.3%) required oral/topical steroids (5, 7.0%); few required topical steroids (3, 4.2%) ± oral antihistamines. Clinical trial patients (180, 59.4%) were more likely to report dAEs than those in the off-trial setting (OR=5.1 [95% CI 2.55-10.12]; p <0.001). Of clinical trial patients, concomitant abiraterone/prednisone recipients (109 of 180, 60.6%) were more likely to report dAEs (OR=3.1 [95% CI 1.53-6.17]; p=0.002). CONCLUSIONS: Apalutamide-related dAEs are frequent and can be managed with topical ± oral steroids. With expanded approval of apalutamide, dAE identification and management are essential.


Subject(s)
Exanthema , Prostatic Neoplasms , Androgen Receptor Antagonists/adverse effects , Exanthema/chemically induced , Humans , Male , Prostatic Neoplasms/drug therapy , Thiohydantoins/adverse effects
10.
Clin Cancer Res ; 28(5): 860-869, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34965947

ABSTRACT

PURPOSE: The clinical impact of concurrent corticosteroid use (CCU) on enzalutamide-treated patients with metastatic castration-resistant prostate cancer (mCRPC) is unknown. We investigated the association of CCU with overall survival (OS), radiographic progression-free survival (rPFS), and time to prostate-specific antigen progression (TTPP) in post-chemotherapy, enzalutamide-treated patients with mCRPC. PATIENTS AND METHODS: Post hoc analysis of AFFIRM (NCT00974311) with patients (n = 1,199) randomized 2:1 to enzalutamide 160 mg/day or placebo. Treatment group, CCU, and known prognostic factors were evaluated for impact on OS, rPFS, and TTPP using a multivariate Cox proportional hazards model. CCU was defined as "baseline" (use started at baseline) or "on-study" (baseline plus use that was started during the trial). RESULTS: Enzalutamide significantly improved OS, rPFS, and TTPP independent of baseline CCU but was associated with inferior clinical outcomes when compared with no baseline CCU, including a shorter OS [10.8 months vs. not reached (NR); HR for use vs. no use, 2.13; 95% confidence interval (CI), 1.79-2.54], rPFS (5.2 months vs. 8.0 months; HR, 1.49; 95% CI, 1.29-1.72], and TTPP (4.6 months vs. 5.7 months; HR, 1.50; 95% CI, 1.25-1.81). These findings held in a multivariate analysis adjusting for baseline prognostic factors wherein baseline CCU was independently associated with decreased OS (HR, 1.71; 95% CI, 1.43-2.04; P < 0.0001) and rPFS (HR, 1.28; 95% CI, 1.11-1.48; P = 0.0007). CONCLUSIONS: Patients with mCRPC benefited from enzalutamide treatment independent of CCU, but CCU was associated with worse baseline prognostic factors and outcomes.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Adrenal Cortex Hormones/therapeutic use , Antineoplastic Agents/therapeutic use , Benzamides , Disease-Free Survival , Humans , Male , Multivariate Analysis , Nitriles/therapeutic use , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant/pathology , Treatment Outcome
11.
Clin Cancer Res ; 27(14): 4077-4088, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33820782

ABSTRACT

PURPOSE: While the detection of AR-V7 in circulating tumor cells (CTC) is associated with resistance to abiraterone or enzalutamide in men with metastatic castration-resistant prostate cancer (mCRPC), it only accounts for a minority of this resistance. Neuroendocrine (NE) differentiation or chromosomal instability (CIN) may be additional mechanisms that mediate resistance. EXPERIMENTAL DESIGN: PROPHECY was a multicenter prospective study of men with high-risk mCRPC starting abiraterone or enzalutamide. A secondary objective was to assess Epic CTC CIN and NE phenotypes before abiraterone or enzalutamide and at progression. The proportional hazards (PH) model was used to investigate the prognostic importance of CIN and NE in predicting progression-free survival and overall survival (OS) adjusting for CTC number (CellSearch), AR-V7, prior therapy, and clinical risk score. The PH model was utilized to validate this association of NE with OS in an external dataset of patients treated similarly at Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY). RESULTS: We enrolled 118 men with mCRPC starting on abiraterone or enzalutamide; 107 were evaluable on the Epic platform. Of these, 36.4% and 8.4% were CIN positive and NE positive, respectively. CIN and NE were independently associated with worse OS [HR, 2.2; 95% confidence interval (CI), 1.2-4.0 and HR 3.8; 95% CI, 1.2-12.3, respectively] when treated with abiraterone/enzalutamide. The prognostic significance of NE positivity for worse OS was confirmed in the MSKCC dataset (n = 173; HR, 5.7; 95% CI, 2.6-12.7). CONCLUSIONS: A high CIN and NE CTC phenotype is independently associated with worse survival in men with mCRPC treated with abiraterone/enzalutamide, warranting further prospective controlled predictive studies to inform treatment decisions.


Subject(s)
Androstenes/therapeutic use , Benzamides/therapeutic use , Chromosomal Instability , Neoplastic Cells, Circulating , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Adult , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Neoplasm Metastasis , Neurosecretory Systems , Phenotype , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Treatment Outcome
12.
Cancer Res ; 80(22): 4892-4903, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32816908

ABSTRACT

Chromosomal instability (CIN) increases a tumor cell's ability to acquire chromosomal alterations, a mechanism by which tumor cells evolve, adapt, and resist therapeutics. We sought to develop a biomarker of CIN in circulating tumor cells (CTC) that are more likely to reflect the genetic diversity of patient's disease than a single-site biopsy and be assessed rapidly so as to inform treatment management decisions in real time. Large-scale transitions (LST) are genomic alterations defined as chromosomal breakages that generate chromosomal gains or losses of greater than or equal to10 Mb. Here we studied the relationship between the number of LST in an individual CTC determined by direct sequencing and morphologic features of the cells. This relationship was then used to develop a computer vision algorithm that utilizes CTC image features to predict the presence of a high (9 or more) versus low (8 or fewer) LST number in a single cell. As LSTs are a primary functional component of homologous recombination deficient cellular phenotypes, the image-based algorithm was studied prospectively on 10,240 CTCs in 367 blood samples obtained from 294 patients with progressing metastatic castration-resistant prostate cancer taken prior to starting a standard-of-care approved therapy. The resultant computer vision-based biomarker of CIN in CTCs in a pretreatment sample strongly associated with poor overall survival times in patients treated with androgen receptor signaling inhibitors and taxanes. SIGNIFICANCE: A rapidly assessable biomarker of chromosomal instability in CTC is associated with poor outcomes when detected in men with progressing mCRPC.


Subject(s)
Algorithms , Chromosomal Instability/genetics , Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant/genetics , Aged , Aged, 80 and over , Chromosome Breakage , DNA Copy Number Variations , Disease Progression , Genetic Markers , Genomic Structural Variation , High-Throughput Screening Assays , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Reproducibility of Results , Sensitivity and Specificity
13.
Nat Commun ; 9(1): 3338, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115909

ABSTRACT

Li-Fan Lu and Alexander Y. Rudensky, who supplied miR-146a floxed mice used in this study, were inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article. The generation of the floxed mice has been described in detail by Cho and Lee et al.1.

14.
Nat Commun ; 8(1): 851, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021573

ABSTRACT

The innate inflammatory response must be tightly regulated to ensure effective immune protection. NF-κB is a key mediator of the inflammatory response, and its dysregulation has been associated with immune-related malignancies. Here, we describe a miRNA-based regulatory network that enables precise NF-κB activity in mouse macrophages. Elevated miR-155 expression potentiates NF-κB activity in miR-146a-deficient mice, leading to both an overactive acute inflammatory response and chronic inflammation. Enforced miR-155 expression overrides miR-146a-mediated repression of NF-κB activation, thus emphasizing the dominant function of miR-155 in promoting inflammation. Moreover, miR-155-deficient macrophages exhibit a suboptimal inflammatory response when exposed to low levels of inflammatory stimuli. Importantly, we demonstrate a temporal asymmetry between miR-155 and miR-146a expression during macrophage activation, which creates a combined positive and negative feedback network controlling NF-κB activity. This miRNA-based regulatory network enables a robust yet time-limited inflammatory response essential for functional immunity.MicroRNAs (miR) are important regulators of gene transcription, with miR-155 and miR-146a both implicated in macrophage activation. Here the authors show that NF-κB signalling, miR-155 and miR-146a form a complex network of cross-regulations to control gene transcription in macrophages for modulating inflammatory responses.


Subject(s)
Macrophages/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , Animals , HEK293 Cells , Humans , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism
15.
J Biol Chem ; 292(2): 732-747, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27913625

ABSTRACT

Podocyte injury is an early event in diabetic kidney disease and is a hallmark of glomerulopathy. MicroRNA-146a (miR-146a) is highly expressed in many cell types under homeostatic conditions, and plays an important anti-inflammatory role in myeloid cells. However, its role in podocytes is unclear. Here, we show that miR-146a expression levels decrease in the glomeruli of patients with type 2 diabetes (T2D), which correlates with increased albuminuria and glomerular damage. miR-146a levels are also significantly reduced in the glomeruli of albuminuric BTBR ob/ob mice, indicating its significant role in maintaining podocyte health. miR-146a-deficient mice (miR-146a-/-) showed accelerated development of glomerulopathy and albuminuria upon streptozotocin (STZ)-induced hyperglycemia. The miR-146a targets, Notch-1 and ErbB4, were also significantly up-regulated in the glomeruli of diabetic patients and mice, suggesting induction of the downstream TGFß signaling. Treatment with a pan-ErbB kinase inhibitor erlotinib with nanomolar activity against ErbB4 significantly suppressed diabetic glomerular injury and albuminuria in both WT and miR-146a-/- animals. Treatment of podocytes in vitro with TGF-ß1 resulted in increased expression of Notch-1, ErbB4, pErbB4, and pEGFR, the heterodimerization partner of ErbB4, suggesting increased ErbB4/EGFR signaling. TGF-ß1 also increased levels of inflammatory cytokine monocyte chemoattractant protein-1 (MCP-1) and MCP-1 induced protein-1 (MCPIP1), a suppressor of miR-146a, suggesting an autocrine loop. Inhibition of ErbB4/EGFR with erlotinib co-treatment of podocytes suppressed this signaling. Our findings suggest a novel role for miR-146a in protecting against diabetic glomerulopathy and podocyte injury. They also point to ErbB4/EGFR as a novel, druggable target for therapeutic intervention, especially because several pan-ErbB inhibitors are clinically available.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , MicroRNAs/metabolism , Podocytes/metabolism , Receptor, ErbB-4/biosynthesis , Receptor, Notch1/biosynthesis , Up-Regulation , Animals , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Erlotinib Hydrochloride/pharmacology , Mice , Mice, Knockout , MicroRNAs/genetics , Podocytes/pathology , Receptor, ErbB-4/genetics , Receptor, Notch1/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Risk Factors , Signal Transduction/drug effects , Signal Transduction/genetics , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
16.
J Exp Med ; 212(10): 1679-92, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26371188

ABSTRACT

MicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the prepro-B cell to pro-B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in accelerated B cell recovery after antibody-mediated B cell depletion. We find that Sox4 is a target of miR-132 in B cells. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from overexpression of miR-132 alone, thus suggesting that miR-132 may regulate B lymphopoiesis through Sox4. In addition, we show that the expression of miR-132 can inhibit cancer development in cells that are prone to B cell cancers, such as B cells expressing the c-Myc oncogene. We have thus uncovered miR-132 as a novel contributor to B cell development.


Subject(s)
B-Lymphocytes/physiology , MicroRNAs/genetics , SOXC Transcription Factors/genetics , 3' Untranslated Regions , Animals , Apoptosis/genetics , B-Lymphocytes/pathology , Cell Survival , Gene Expression Regulation , HEK293 Cells , Humans , Leukemia, B-Cell/genetics , Leukemia, Experimental/genetics , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Multigene Family , SOXC Transcription Factors/metabolism
17.
Curr Opin Hematol ; 22(4): 286-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26049748

ABSTRACT

PURPOSE OF REVIEW: Hematopoietic stem cells can self-renew and also give rise to the entire repertoire of hematopoietic cells. During acute infectious and inflammatory stresses, the hematopoietic system can quickly adapt to demand by increasing output of innate immune cells many-fold, often at the expense of lymphopoiesis and erythropoiesis. We review recent advances in understanding the regulation of stress-induced hematopoiesis with a specific focus on the direct effects of inflammatory signaling on hematopoietic stem and progenitor cells (HSPCs). RECENT FINDINGS: Recent studies have highlighted several areas of exciting new developments in the field, including the complex interaction and crosstalk within HSPCs and between bone marrow mesenchymal stem cells and endothelial cells needed to achieve regulated myelopoiesis, identification of increased number of inflammatory and infectious molecules with direct effects on HSPCs, the critical role of inflammatory signaling on embryonic specification of hematopoietic stem cells, and the ability of cytokines to instruct lineage choice at the HSPC level. SUMMARY: These exciting new findings will shape our fundamental understanding of how inflammatory signaling regulates hematopoiesis in health and disease, and facilitate the development of potential interventions to treat hematologic diseases associated with altered inflammatory signaling.


Subject(s)
Adaptation, Physiological/immunology , Gene Expression Regulation/immunology , Hematologic Diseases/genetics , Hematopoietic Stem Cells/immunology , Stress, Physiological/immunology , Adaptation, Physiological/genetics , Cell Communication , Cell Differentiation , Cell Lineage/immunology , Cytokines/genetics , Cytokines/immunology , Erythropoiesis/genetics , Erythropoiesis/immunology , Hematologic Diseases/immunology , Hematologic Diseases/pathology , Hematopoietic Stem Cells/pathology , Humans , Lymphopoiesis/genetics , Lymphopoiesis/immunology , Myelopoiesis/genetics , Myelopoiesis/immunology , Signal Transduction , Stress, Physiological/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
18.
Immunity ; 42(6): 1021-32, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26084022

ABSTRACT

MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is upregulated during aging. Both overexpression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrate that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that might play a role in age-related hematopoietic defects.


Subject(s)
Bone Marrow Cells/physiology , Forkhead Transcription Factors/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , MicroRNAs/metabolism , Aging/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Line , Cell Survival/genetics , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , MicroRNAs/genetics , Stem Cell Factor/metabolism
19.
Nat Commun ; 6: 6436, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25743066

ABSTRACT

Tight control of T follicular helper (Tfh) cells is required for optimal maturation of the germinal centre (GC) response. The molecular mechanisms controlling Tfh-cell differentiation remain incompletely understood. Here we show that microRNA-146a (miR-146a) is highly expressed in Tfh cells and peak miR-146a expression marks the decline of the Tfh response after immunization. Loss of miR-146a causes cell-intrinsic accumulation of Tfh and GC B cells. MiR-146a represses several Tfh-cell-expressed messenger RNAs, and of these, ICOS is the most strongly cell autonomously upregulated target in miR-146a-deficient T cells. In addition, miR-146a deficiency leads to increased ICOSL expression on GC B cells and antigen-presenting cells. Partial blockade of ICOS signalling, either by injections of low dose of ICOSL blocking antibody or by halving the gene dose of Icos in miR-146a-deficient T cells, prevents the Tfh and GC B-cell accumulation. Collectively, miR-146a emerges as a post-transcriptional brake to limit Tfh cells and GC responses.


Subject(s)
Cell Differentiation/immunology , Germinal Center/immunology , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , MicroRNAs/metabolism , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , DNA Primers/genetics , Flow Cytometry , Humans , Luciferases , Mice , Mice, Inbred C57BL , Mice, Knockout , Palatine Tonsil/cytology , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric
20.
Proc Natl Acad Sci U S A ; 111(30): E3081-90, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25024218

ABSTRACT

Allergic diseases, orchestrated by hyperactive CD4(+) Th2 cells, are some of the most common global chronic diseases. Therapeutic intervention relies upon broad-scale corticosteroids with indiscriminate impact. To identify targets in pathogenic Th2 cells, we took a comprehensive approach to identify the microRNA (miRNA) and mRNA transcriptome of highly purified cytokine-expressing Th1, Th2, Th9, Th17, and Treg cells both generated in vitro and isolated ex vivo from allergy, infection, and autoimmune disease models. We report here that distinct regulatory miRNA networks operate to regulate Th2 cells in house dust mite-allergic or helminth-infected animals and in vitro Th2 cells, which are distinguishable from other T cells. We validated several miRNA (miR) candidates (miR-15a, miR-20b, miR-146a, miR-155, and miR-200c), which targeted a suite of dynamically regulated genes in Th2 cells. Through in-depth studies using miR-155(-/-) or miR-146a(-/-) T cells, we identified that T-cell-intrinsic miR-155 was required for type-2 immunity, in part through regulation of S1pr1, whereas T-cell-intrinsic miR-146a was required to prevent overt Th1/Th17 skewing. These data identify miR-155, but not miR-146a, as a potential therapeutic target to alleviate Th2-medited inflammation and allergy.


Subject(s)
Helminthiasis, Animal/immunology , Hypersensitivity/immunology , MicroRNAs/immunology , Th2 Cells/immunology , Animals , Gene Expression Profiling , Helminthiasis, Animal/genetics , Helminthiasis, Animal/pathology , Hypersensitivity/genetics , Hypersensitivity/pathology , Mice , Mice, Knockout , MicroRNAs/genetics , Pyroglyphidae/immunology , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/immunology , Sphingosine-1-Phosphate Receptors , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology , Th2 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...