Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 10(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846943

ABSTRACT

The objectives of this study were to determine the chemical compositions, digestible energy (DE), and metabolizable energy (ME) in corn, soybean meal (SBM) and wheat bran (WB) fed to growing pigs, and to develop regression equations for predicting DE and ME. Three separate experiments were conducted to determine DE and ME of corn, SBM, and WB. The DE and ME in corn were determined directly using 10 barrows allotted to a replicated 5 × 5 Latin square design, and the diets were formulated with one of 10 corn samples. The DE and ME in SBM and WB were determined by difference using two corn basal diets and 10 corn-SBM or 10 corn-SBM-WB diets, which were allotted to a replicated 6 × 6 Latin square design. Ten corn samples were obtained from the main corn producing areas of China. Ten SBM samples were obtained from nine different crushing facilities in nine provinces in China. Ten WB samples were collected from different feed mills of China. Samples were analyzed for dry matter (DM), crude protein (CP), ether extract (EE), ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), gross energy (GE), and soluble carbohydrates (SCHO). The best-fit equations for corn were DE (MJ/kg DM) = 20.18 - 0.76 × EE (%) and ME (MJ/kg DM) = 5.74 + 1.11 × DE (MJ/kg DM) - 0.33 × CP (%) - 0.07 × SCHO (%). The best-fit equations for SBM were DE (MJ/kg DM) = 42.91 - 3.43 × Ash (%) - 0.20 × NDF (%) + 0.09 × ADF (%) and ME (MJ/kg DM) = -21.67 + 0.89 × DE (MJ/kg DM) - 1.06 × GE (MJ/kg DM). The best-fit equations for WB were DE (MJ/kg DM) = -7.09 + 1.54 × CP (%) - 0.25 × NDF (%) - 0.32 × ADF (%) + 0.23 × Ash (%) and ME (MJ/kg DM) = 0.02 + 0.96 × DE (MJ/kg DM). The chemical composition of corn, SBM, and WB can vary substantially from zone to zone, resulting in considerable variation in its available energy value for pig. The DE and ME of corn, SBM and WB for growing pigs can be predicted based on their chemical compositions.

2.
J Sci Food Agric ; 100(11): 4282-4291, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32378205

ABSTRACT

BACKGROUND: The efficient utilization of fiber-rich co-products is important for optimizing feed resource utilization and animal health. This study was conducted to evaluate the fermentation characteristics of fiber-rich co-products, which had equal quantities of total dietary fiber (TDF), at different time points using batch in vitro methods. It considered their gas production, short-chain fatty acid (SCFA) production, and microbial composition. RESULTS: The fermentation of wheat bran (WB) and oat bran (OB) showed higher and faster (P < 0.05) gas and SCFA production than corn bran (CB), sugar beet pulp (SBP), and soybean hulls (SH). The α-diversity was higher in the CB, SBP, and SH groups than in the WB and OB groups (P < 0.05). At the phylum level, OB and WB fermentation showed lower (P < 0.05) relative abundance of Actinobacteria than the CB, SBP, and SH groups. At the genus level, OB and WB fermentation increased the Enterococcus population in comparison with the CB, SBP, and SH groups, whereas CB and SBP fermentation improved the relative abundance of the Christensenellaceae R-7 group more than the WB, OB, and SH groups (P < 0.05). CONCLUSION: Overall, WB and OB were rapidly fermented by fecal microbiota, in contrast with SBP, SH, and CB. Fermentation of different fiber-rich co-products with an equal TDF content gives different responses in terms of microbial composition and SCFA production due to variations in their physicochemical properties and molecular structure. © 2020 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Bacteria/metabolism , Cattle/microbiology , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Animals , Avena/metabolism , Cattle/metabolism , Dietary Fiber/analysis , Digestion , Feces/microbiology , Fermentation , Models, Biological , Zea mays/metabolism
3.
Asian-Australas J Anim Sci ; 32(9): 1414-1422, 2019 09.
Article in English | MEDLINE | ID: mdl-30145877

ABSTRACT

Objective: Two experiments were conducted to determine the effects of adaptation time and inclusion level of sugar beet pulp (SBP) on nutrient digestibility and to evaluate the ileal AA digestibility of SBP fed to pigs. Methods: In Exp. 1, thirty-six crossbred barrows (85.0 ± 2.1 kg) were allotted to 6 diets in a completely randomized design with six replicates per diet. Diets included a corn-soybean meal diet and 5 test diets containing 14.6, 24.4, 34.2, 43.9, or 53.7% SBP, respectively. The adaptation time consisted 7, 14, 21, or 28 d consecutively for each pig followed by 5 d for fecal collection. Feces were collected from d 8 to 13, d 15 to 20, d 22 to 27, and d 29 to 34, respectively. In Exp. 2, six pigs (35.1 ± 1.7 kg) with T-cannulas at the terminal ileum were fed to 3 diets in a replicated 3×3 Latin square design with 3 periods and 2 replicate pigs per diet. Each period consisted 5 d for diet adaptation followed by 2 d for digesta collection. Results: The DE value and the apparent total tract digestibility (ATTD) of GE, DM, ash, and OM in diets linearly decreased (p<0.05) as the adaptation time increased or as the dietary SBP increased, while the ATTD of NDF and ADF in diets linearly increased (p<0.01) as the dietary SBP increased. The DE value and the ATTD of GE and CP in SBP linearly increased (p<0.05) as the adaptation time increased, while the ATTD of CP in SBP linearly decreased (p<0.01) as the inclusion level increased. The SID of Lys, Met, Thr, and Trp in SBP was 37.03, 51.62, 40.68, and 46.22%, respectively. Conclusion: The results of this study indicated that the ATTD of energy and nutrients were decreased as inclusion rate of SBP increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...