Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 650(Pt B): 2014-2023, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37531668

ABSTRACT

In recent years, electromagnetic pollution has become more and more serious, and there is an urgent need for microwave absorbing materials with superior performance. Prussian blue analogue (PBA) is a metal organic framework material with the advantages of diverse morphology and tunable composition. Therefore, PBA has attracted a lot of attention in the field of microwave absorption. In this work, PBA was coated on the surface of carbon composites by hydrothermal method, and then PPy was compounded on its surface after carbonization treatment to construct hierarchical core-shell CoC@CoFe/C@PPy fibers. The fibers have Co-doped C composites as the core and CoFe/C decorated with PPy as the shell. This unique hierarchical structure and various microwave absorption mechanisms are described in detail. The microwave absorption performance is optimized by adjusting the filling of the sample. The best microwave absorption performances are achieved at 25 wt% filling of CoC@CoFe/C@PPy. At a thickness of just 1.69 mm, CoC@CoFe/C@PPy fiebrs have a minimum reflection loss (RLmin) of -64.32 dB. When the thickness is 1.88 mm, CoC@CoFe/C@PPy achieves a maximum effective absorption bandwidth (EABmax) of 5.38 GHz. The results indicate that the CoC@CoFe/C@PPy composite fibers have a great potential in the field of microwave absorption.

2.
iScience ; 26(6): 106823, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37250792

ABSTRACT

Microplastics (MPs, particle size < 5 mm) are an emerging contaminant in aquatic environment, which have attracted increasing attention worldwide. In this study, a colorimetric method for MPs detection was developed based on gold nanoparticles (AuNPs)-anchored peptides (LCI or TA2), which are able to specifically recognize and adhere to polypropylene (PP) or polystyrene (PS). The AuNPs-anchored peptides accumulated on the surface of MPs, rendering a color change from red to gray-blue and transforming the surface plasmon absorption intensity and wavelength. The designed method presented high selectivity, stability, and reproducibility, with a detection range of 2.5-15 µg/mL. The results demonstrated that the developed approach will be valuable in the precise, facile, and cost-effective estimation of MPs in different matrices, regulating the control over MPs pollution and its hazardous impact on health and ecosystems.

3.
Anim Genet ; 54(4): 526-535, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36871966

ABSTRACT

Intramuscular fat (IMF) is one of the most important indexes of pork taste quality. Diacylglycerol acyltransferase 1 (DGAT1), belonging to the acyl-coenzyme A: DGAT enzymes family, is a rate-limiting enzyme responsible for the final step of triglyceride (TG) synthesis. It is involved in TG storage in skeletal muscle; however, the underlying mechanism is not well understood. This study aimed to uncover functional mutations that can influence DGAT1 expression and consequently affect IMF deposition in pork. Two experimental groups containing individuals with high and low IMF content (6.23 ± 0.20 vs. 1.25 ± 0.05, p < 0.01) were formed from 260 Duroc × Large White × Yorkshire (D × L × Y) cross-bred pigs. A novel SNP c.-379 C>T was uncovered in the DGAT1 gene using comparative sequencing with pool DNA of high- and low-IMF groups. The IMF content of CT genotype individuals (3.19 ± 0.11%) was higher than that of CC genotype individuals (2.86 ± 0.11%) when analyzing 260 D × L × Y pigs (p < 0.05). The DGAT1 expression levels revealed a significant positive correlation with IMF content (r = 0.33, p < 0.01). Luciferase assay revealed that the DGAT1 promoter with the c.-379 T allele has a higher transcription activity than that bearing the C allele in C2C12 myoblast cells, but not in 3T3-L1 pre-adipocytes. Online prediction followed by chromatin immunoprecipitation-polymerase chain reaction assay confirmed that myogenic determination factor 1 (MYOD1) binds to the DGAT1 promoter with the c.-379 C allele but not the T allele. In vitro experiments demonstrated that MYOD1 represses DGAT1 transcription and lipogenesis. As a muscle-specific transcription factor, MYOD1 can inhibit the transcription of DGAT1 with the c.-379 C allele in muscle cells. However, in the absence of MYOD1 binding to the mutated DGAT1 promoter with the c.-379 T allele, DGAT1 expresses at a higher level in the muscle cells of the c.-379 T genotype, leading to more intramyocellular lipid accumulation than in the muscle cells of the c.-379 C genotype. The SNP c.-379 C>T in the promoter region of the DGAT1 gene provides a promising molecular marker for improving pork IMF content without affecting other fat depots.


Subject(s)
Diacylglycerol O-Acyltransferase , Muscle, Skeletal , Swine , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Muscle, Skeletal/metabolism , Gene Expression Regulation , Mutation , Lipids
4.
ACS Biomater Sci Eng ; 8(11): 4738-4750, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36229413

ABSTRACT

Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.


Subject(s)
Nanostructures , Peptides , Peptides/chemistry , Nanostructures/therapeutic use , Nanostructures/chemistry , Drug Delivery Systems , Polymers , Hydrophobic and Hydrophilic Interactions
5.
Front Neurosci ; 16: 808897, 2022.
Article in English | MEDLINE | ID: mdl-36117639

ABSTRACT

In recent years, diagnostic studies of brain disorders based on auditory event-related potentials (AERP) have become a hot topic. Research showed that AERP might help to detect patient consciousness, especially using the subjects' own name (SON). In this study, we conducted a preliminary analysis of the brain response to Chinese name stimuli. Twelve subjects participated in this study. SONs were used as target stimuli for each trial. The names used for non-target stimuli were divided into three Chinese character names condition (3CC) and two Chinese characters names condition (2CC). Thus, each subject was required to be in active (silent counting) and passive mode (without counting) with four conditions [(passive, active) × (3CC, 2CC)]. We analyzed the spatio-temporal features for each condition, and we used SVM for target vs. non-target classification. The results showed that the passive mode under 3CC conditions showed a similar brain response to the active mode, and when 3CC was used as a non-target stimulus, the brain response induced by the target stimulus would have a better interaction than 2CC. We believe that the passive mode 3CC may be a good paradigm to replace the active mode which might need more attention from subjects. The results of this study can provide certain guidelines for the selection and optimization of the paradigm of auditory event-related potentials based on name stimulation.

6.
Biochem Biophys Res Commun ; 619: 68-75, 2022 09 03.
Article in English | MEDLINE | ID: mdl-35738067

ABSTRACT

Obesity, which is associated with type 2 diabetes, is a threat to human health. There are studies, which suggest that some compounds can induce browning of white adipocytes to combat obesity. In this study, we selected nonivamide, an analog of capsaicin, to detect whether it influenced the browning of porcine white adipocytes. First, we found 25 µM nonivamide promoted apoptosis of porcine subcutaneous pre-adipocytes. After pre-adipocytes differentiation, nonivamide inhibited adipogenesis by reducing the expressions of Pparγ, Cebpα, while it promoted lipolysis by up-regulating Hsl, Atgl. Nonivamide also induced browning of porcine subcutaneous adipocytes by up-regulating the expression of brown and beige adipocyte gene markers, such as Prdm16, Cidea, and Slc27a1. Additionally, thermogenesis gene markers Cpt1a and Cpt1b were significantly up-regulated by nonivamide. Furthermore, nonivamide promoted mitochondrial biogenesis by up-regulating the expression of Tfam, Nrf1, Nrf2, and Tomm20. In conclusion, nonivamide is a potent compound to induce porcine adipocyte browning for treating obesity.


Subject(s)
Adipocytes, Beige , Diabetes Mellitus, Type 2 , Adipocytes, Beige/metabolism , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Capsaicin/analogs & derivatives , Capsaicin/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Obesity/metabolism , Swine , Thermogenesis
7.
Sci Rep ; 12(1): 9921, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705630

ABSTRACT

The tensile strength of loess is closely related to geological disasters. As eco-friendly materials, biopolymers have an excellent strengthening effect on the mechanical properties of soil. The effect of different initial dry densities and xanthan gum (XG) contents on the microstructure and mechanical behavior of XG-treated loess was studied with a series of microscopic tests and splitting tensile tests based on the particle image velocimetry technique. The results show that the XG became concentrated and agglomerated during dehydration, forming bridge links between soil particles and covering their surfaces. The XG-treated loess had a significant concentration of micropores and mesopores, with greater peak pore size distribution values than untreated loess. The specimens' load-displacement curves with different XG contents and initial dry densities showed strain-softening. The displacement vector field indicated that specimens' primary cracks were radial-vertical, and the secondary cracks were well-developed. The strain-softening phenomenon was more significant with increased XG content and initial dry density, and the specimens' splitting tensile strength and brittleness increased. XG treatment gave the soils stronger cementation and a denser structure, helping to increase strength and brittleness. This research provides a scientific basis and practical experience for applying XG in geotechnical engineering.


Subject(s)
Polysaccharides, Bacterial , Soil , Polysaccharides, Bacterial/chemistry , Rheology , Tensile Strength
8.
Genes (Basel) ; 12(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34946801

ABSTRACT

Sestrin-3, together with the other two members Sestrin-1 and Sestrin-2, belongs to the Sestrin family. The Sestrin protein family has been demonstrated to be involved in antioxidative, metabolic homeostasis, and even the development of nonalcoholic steatohepatitis (NASH). However, the adipogenic regulatory role of SESN3 in adipogenesis still needs to be further explored. In this study, we demonstrated SESN3 inhibited porcine pre-adipocyte proliferation, thus suppressing its adipogenesis. Meanwhile, SESN3 has been demonstrated to inhibit Smad3 thus protecting against NASH. Further, for our previous study, we found mmu-miR-124 involved in 3T3-L1 cell adipogenesis regulation. In this study, we also identified that ssc-miR-124 inhibited porcine pre-adipocyte proliferation, thus suppressing its adipogenesis, and the SMAD3 was an inhibitor of ssc-miR-124 by binding to its promoter. Furthermore, the ssc-miR-124 targeted porcine C/EBPα and GR and thus inhibited pre-adipocyte adipogenesis. In conclusion, SESN3 inhibited SMAD3, thus improving ssc-miR124, and then suppressed C/EBPα and GR to regulate pre-adipocytes adipogenesis.


Subject(s)
Adipocytes/pathology , Adipogenesis/genetics , Heat-Shock Proteins/genetics , MicroRNAs/genetics , Smad3 Protein/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Mice , Non-alcoholic Fatty Liver Disease/genetics
9.
Front Genet ; 11: 603144, 2020.
Article in English | MEDLINE | ID: mdl-33381152

ABSTRACT

MicroRNAs (miRNAs), as a series of important short-chain non-coding RNAs, play an important post-transcriptional role in many biological activities, including adipogenesis. miR-144 is significantly upregulated in type II diabetes (T2D), and is considered to be an important biomarker for T2D. However, although the occurrence of T2D is inextricably linked to adipogenesis, whether miR-144 directly regulates adipogenesis remains to be further explored. In this paper, we demonstrate that miR-144 has a higher expression level in a porcine high backfat group, and it has a significant positive effect on promoting the differentiation of pre-adipocytes. FoxO1 is a target gene of miR-144, and inhibits the differentiation of pre-adipocytes. On the other hand, we demonstrate that FoxO1 can bind to the AdipoQ gene promoter, then regulate the AdipoQ expression by binding to the FoxO1 binding site in the AdipoQ promoter -1,499 to -1,489 bp and -1,238 to -1,228 bp regions, especially the -1,499 to -1,489 bp region. Meanwhile, miR-144 and FoxO1 co-expressional research has also shown that both factors regulate adipogenesis. To sum up, our research indicates that miR-144 targets FoxO1, thus reducing its expression and inhibiting its promotional effect on adiponectin, thereby alleviating the inhibitory effect of adiponectin on adipogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...