Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Genet Sel Evol ; 55(1): 69, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803296

ABSTRACT

BACKGROUND: Heterosis is routinely exploited to improve animal performance. However, heterosis and its underlying molecular mechanism for feed intake and efficiency have been rarely explored in chickens. Feed efficiency continues to be an important breeding goal trait since feed accounts for 60 to 70% of the total production costs in poultry. Here, we profiled the mRNA-lncRNA landscape of 96 samples of the hypothalamus, liver and duodenum mucosa from White Leghorn (WL), Beijing-You chicken (YY), and their reciprocal crosses (WY and YW) to elucidate the regulatory mechanisms of heterosis. RESULTS: We observed negative heterosis for both feed intake and residual feed intake (RFI) in YW during the laying period from 43 to 46 weeks of age. Analysis of the global expression pattern showed that non-additivity was a major component of the inheritance of gene expression in the three tissues for YW but not for WY. The YW-specific non-additively expressed genes (YWG) and lncRNA (YWL) dominated the total number of non-additively expressed genes and lncRNA in the hypothalamus and duodenum mucosa. Enrichment analysis of YWG showed that mitochondria components and oxidation phosphorylation (OXPHOS) pathways were shared among the three tissues. The OXPHOS pathway was enriched by target genes for YWL with non-additive inheritance of expression in the liver and duodenum mucosa. Weighted gene co-expression network analysis revealed divergent co-expression modules associated with feed intake and RFI in the three tissues from WL, YW, and YY. Among the negatively related modules, the OXPHOS pathway was enriched by hub genes in the three tissues, which supports the critical role of oxidative phosphorylation. Furthermore, protein quantification of ATP5I was highly consistent with ATP5I expression in the liver, which suggests that, in crossbred YW, non-additive gene expression is down-regulated and decreases ATP production through oxidative phosphorylation, resulting in negative heterosis for feed intake and efficiency. CONCLUSIONS: Our results demonstrate that non-additively expressed genes and lncRNA involved in oxidative phosphorylation in the hypothalamus, liver, and duodenum mucosa are key regulators of the negative heterosis for feed intake and RFI in layer chickens. These findings should facilitate the rational choice of suitable parents for producing crossbred chickens.


Subject(s)
Chickens , RNA, Long Noncoding , Animals , Chickens/genetics , RNA, Long Noncoding/genetics , Hybrid Vigor , Gene Expression Profiling/veterinary , Eating/genetics , Animal Feed/analysis
2.
Poult Sci ; 102(12): 103099, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37812871

ABSTRACT

The presence of EVs in seminal plasma (SPEVs) suggests their involvement on fertility via transmitting information between the original cells and recipient cells. SPEVs-coupled miRNAs have been shown to affect sperm motility, maturation, and capacitation in mammals, but rarely in poultry species. The present study aims to reveal the profile of SPEVs miRNAs and their potential effect on sperm storage and function in poultry. The SPEVs was successfully isolated from 4 different chicken breeds by ultracentrifugation and verified. Deep sequencing of SPEVs small RNA library of each breed identified 1077 miRNAs in total and 563 shared ones. The top 10 abundant miRNAs (such as miR-10-5p, miR-100-5p, and miR-10a-5p etc.) accounted for around 60% of total SPEVs miRNA reads and are highly conserved across species, predisposing their functional significance. Target genes prediction and functional enrichment analysis indicated that the most abundantly expressed miRNAs may regulate pathways like ubiquitin-mediated proteolysis, endocytosis, mitophagy, glycosphingolipid biosynthesis, fatty acid metabolism, and fatty acid elongation. The high abundant SPEVs-coupled miRNAs were found to target 107 and 64 functionally important mRNAs in the potential recipient cells, sperm and sperm storage tubules (SST) cells, respectively. The pathways that enriched by target mRNAs revealed that the SPEVs-coupled miRNA may rule the fertility by affecting the sperm maturation and regulating the female's immune response and lipid metabolism. In summary, this study presents the distinctive repertoire of SPEVs-coupled miRNAs, and extends our understanding about their potential roles in sperm maturation, capacitation, storage, and fertility, and may help to develop new therapeutic strategies for male infertility and sperm storage.


Subject(s)
Extracellular Vesicles , MicroRNAs , Male , Female , Animals , Semen/metabolism , Chickens/genetics , Chickens/metabolism , Sperm Motility/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Fatty Acids , Mammals/genetics
3.
Poult Sci ; 102(9): 102904, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453280

ABSTRACT

Egg products from indigenous chickens have growing market shares as consumers are pursuing differentiation in egg consumption. The genetic improvement in egg production performance of those breeds is crucial for increasing the economic profit. This study aimed to estimate genetic parameters for egg production and clutch-related traits in indigenous Beijing-You chickens for understanding the genetic architecture and exploring proper biological traits for selection. Data on traits including age at first egg (AFE), egg number (EN), average clutch length (ACL), maximum clutch length (MCL), number of clutches (NC) and pauses (NP), and average pause length (APL) were collected from 4 generations of purebred Beijing-You chickens based on the 43-wk and 66-wk of individual egg production record. The heritabilities, genetic and phenotypic correlations were analyzed by the DMU software with the restricted maximum likelihood method in a multivariate animal model. The results showed that the AFE of Beijing-You chickens was 174.45 d of age, and its heritability was as high as 0.62. The heritability was 0.26 for EN43 and 0.18 for EN66. The clutch traits including ACL, MCL, NC, and NP were moderate to high heritable (h2 = 0.15-0.39), but APL was very low heritable (h2 = 0.05). Genetic correlations were high between AFE and EN (rG(AFE, EN43) = -0.79, rG(AFE, EN66) = -0.39), whereas low between AFE and ACL (rG(AFE, ACL43) = -0.08, rG(AFE, ACL66) = 0.01) and MCL (rG(AFE, MCL) = -0.07). EN had higher correlations with ACL (rG(EN43, ACL43) = 0.59, rG(EN66, ACL66) = 0.40) than that with MCL (rG(EN43, MCL43) = 0.56, rG(EN66, MCL66) = 0.32). The heritability for ACL43 (h2 = 0.38) was higher than that for MCL43 (h2 = 0.33). ACL43 had a positive correlation with EN66 (rG(ACL43, EN66) = 0.62). These results indicated that the egg production of whole laying period could be improved by early selection for AFE and ACL at the same time in Beijing-You chickens.


Subject(s)
Chickens , Ovum , Animals , Chickens/genetics , Beijing , Phenotype , Oviposition/genetics
4.
Poult Sci ; 102(7): 102722, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37167885

ABSTRACT

The study investigated the effects of supplementation of bile acids in drinking water on antitrichomonal activity, growth performance, immunity and microbial composition of pigeon. A total of 180 pairs of White King parent pigeons were randomly assigned to 5 treatments of 6 replications with 6 pairs of parent pigeons and 12 squabs in each replicate. The control (CON) group drank water without any additions. The metronidazole (MTZ) group drank water with 500 µg/mL metronidazole for 7 d and without any additions in other days. The else groups drank water with 500, 750, and 1,250 µg/mL bile acid (BAL, BAM, BAH) for 28 d. The results showed that Trichomonas gallinae (T. gallinae) in MTZ, BAL, BAM, and BAH groups were lower than that in CON group at 14, 21, and 28 d of parent pigeons (P < 0.05) and at 21 and 28 d of squabs (P < 0.05). Albumin and alanine transaminase in CON group were higher than those in MTZ, BAL, and BAH groups (P < 0.05). The levels of soluble CD8 were higher in MTZ and BAH groups compared with CON group (P < 0.05). The lesions in oral mucosa, thymus, liver, and spleen tissues of CON group could be observed. Abundance-based coverage estimator (ACE) index in BAH group was higher than that in CON and MTZ groups. Simpson index in CON and BAH groups was higher than MTZ group (P < 0.05). Lactobacillus was the highest colonized colonic bacteria in genera that were 77.21, 91.20, and 73.19% in CON, MTZ, and BAH, respectively. In conclusion, drinking water supplemented with 500, 750, and 1,250 µg/mL bile acid could inhibit growth of T. gallinae in both parent pigeons and squabs. Squabs infected with T. gallinae in control group had higher mortality rate and more serious tissue lesions. Squabs in bile acids treated group had more sCD8 in serum and abundant intestinal morphology. Bile acids could be an efficient drinking supplements to inhibit T. gallinae and improve pigeon adaptive immunity and intestinal health.


Subject(s)
Drinking Water , Trichomonas , Animals , Antitrichomonal Agents/pharmacology , Columbidae , Metronidazole/pharmacology , Chickens , Dietary Supplements
5.
Poult Sci ; 102(3): 102464, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680859

ABSTRACT

Pigeon has the specific biological ability to produce pigeon milk (also known as crop milk) by its crop. Circular RNAs (circRNAs) are important noncoding RNAs acting as the sponges of miRNAs, but the molecular mechanism of circRNAs regulating crop milk production has not been reported in pigeon. We compared expression profiles of crops during lactating and nonlactating crops, and networks of competing endogenous RNAs (ceRNAs) were constructed. The results showed a total of 8,723 circRNAs were identified, and there were 770 differentially expressed circRNAs (DECs) between these two different periods of crops. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the host genes of DECs were enriched in GnRH, MAPK, Insulin, Wnt, and AMPK signaling pathways. Furthermore, gga_circ_0000300 interacted with miR-92-2-5p, which targeted genes participating in lactation and milk composition synthesis. Gga_circ_0003018, gga_circ_0003019 and gga_circ_0003020 could bind with let-7c-5p regulating SOCS3 in crop milk production. These findings provide the circRNAs expression profiles and facilitate the analysis of molecular mechanism of crop milk production in pigeon.


Subject(s)
Columbidae , Lactation , RNA, Circular , Animals , Female , Columbidae/genetics , Columbidae/metabolism , Lactation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics
6.
Poult Sci ; 102(2): 102378, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565634

ABSTRACT

The crop of pigeon has specific characteristics as producing crop milk in the lactating period. However, the exact mechanisms underlying the regulation of crop lactation remain unclear. miRNAs, the essential regulators of gene expression, are implicated in various physiological and biological activities. In this study, we discovered a new miRNA that regulated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta (PIK3CD) and crop fibrocyte proliferation. Results of the luciferase reporter assay suggested that miR-193-5p suppressed PIK3CD expression by targeting a conserved binding site in the 3'-untranslated region (UTR) of PIK3CD mRNA. MiR-193-5p promoted crop fibrocyte proliferation and migration, whereas PIK3CD inhibited these effects. These findings suggested an important regulatory role of miR-193-5p in crop fibrocyte proliferation, suggesting that miR-193-5p and PIK3CD might be important regulators of crop milk production.


Subject(s)
Columbidae , MicroRNAs , Female , Animals , Columbidae/genetics , Columbidae/metabolism , Cell Line, Tumor , Lactation , Chickens/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
7.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3333-3339, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38511372

ABSTRACT

Grading seeds based on grain size is an effective measure to improve population regularity degree and increase the yield of summer maize. Taking Denghai 605 as the experimental material, we set up a field experiment with treatments based on grain size: large seeds (L), medium-round seeds (MR), medium-flat seeds (MF), medium-round and medium-flat mixed seeds (MRF), and small seeds (S), with no-grading seeds as control (CK). We investigated seedling emergence rate, population regularity degree (including height, ear height and stem diameter), seedling sturdiness index, photosynthetic characteristics, dry matter accumulation and distribution characteristics, and yield. The results showed that the emergence rate followed an order of L>MR>MRF>MF>CK>S, with that of L treatment differed little from MR, MF and MRF treatments, but being significantly higher than S and CK treatments. Plant height and stem diameter population regularity degree of MRF treatment before seven-leaf stage was not different from those of L, MR, MF and S treatments, but significantly higher than those of CK. At the tasseling stage, all treatments had higher population regularity degree of plant height than other stages. Ear height population regularity degree of L, MR, MF, MRF, and S increased by 11.1%, 10.3%, 9.5%, 7.1%, and 6.4% compared with CK, respectively. The seedling sturdiness index of MRF treatment increased by 36.7% compared with S treatment, but was not significantly different from L treatment. The leaf area index of the L and MRF treatments was significantly higher than that of CK, and both had higher population photosynthetic properties. The population dry matter accumulation showed a pattern as L>MR>MRF>MF>CK>S. There was no significant difference among L, MR, and MRF treatments, but that in L being obviously higher than MF, CK, and S treatments. After seed grading, the number of harvested ears of the L and MRF treatments increased significantly, and the yield were shown as L>MR>MRF>MF>CK>S. There was no difference between the yield of MRF, MR and MF treatments. In conclusion, the performance of L treatment was improved but the number was small. Considering the grading cost and yield, the MRF treatment can save the seed amounts of sowing, realize mechanized sowing and precision sowing.


Subject(s)
Seeds , Zea mays , Edible Grain , Plant Leaves , Photosynthesis , Seedlings
8.
Poult Sci ; 101(12): 102224, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36347063

ABSTRACT

This study aimed to investigate the effects of feed systems in parent pigeons on the growth performance, carcass characteristics, organ index, and serum biochemical parameters of squabs. A total of 60 pairs of parent pigeons were selected and divided into 2 groups randomly. The parent pigeons were fed with two feed systems that were whole grains plus granulated feed (WGG) and complete-formula granulated feed (CFG) for 21 d. The results showed that CFG diet could increase carcass yield, heart index, content of trypsin, and growth hormone of squabs (P < 0.05), but decrease feed intake, gizzard index, b* value, malondialdehyde concentration, and uric acid concentration significantly (P < 0.05) comparing with WGG diet. There were no significant differences among the 2 groups in feed intake from d 1 to d 21, abdominal fat yield and body weight changes of squabs and parent pigeons (P > 0.05). It can be concluded from these observations that CFG was beneficial to squab which could improve digestive enzyme and antioxidant ability in the serum, so the CFG should be suggested in practice.


Subject(s)
Chickens , Columbidae , Animals , Diet/veterinary , Eating , Antioxidants , Animal Feed/analysis
9.
Poult Sci ; 101(12): 102201, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279607

ABSTRACT

Heterosis has been widely utilized in chicken breeding to improve economically important traits. However, few studies focused on revealing the factors contributing to egg production heterosis. In this study, White Leghorn and Beijing-You chickens were used as parental breeds to generate purebreds (WW, YY) and reciprocal crossbreeds (WY, YW) to characterize heterosis for egg production traits including age at first egg (AFE), clutch traits, oviposition pattern, and egg quality traits. Results showed that egg number until 35 wk of age (EN35) was higher in crossbreeds than the average of purebreds (P < 0.05) and exhibited positive heterosis of 4.03% and 2.84%) in WY and YW respectively. Crossbreeds commenced laying earlier than the average of purebreds (P < 0.05) with negative heterosis of -1.24% and -0.92% for WY and YW respectively. Moreover, EN35 had negative correlation with AFE (r = -0.85) and positive correlation with average clutch length (ACL) (r = 0.48) and maximum clutch length (MCL) (r = 0.66). However, negative heterosis for ACL (-19.62%, -16.51%) and MCL (-22.88%, -18.97%) were obtained in WY and YW, respectively. This may be due to the positive heterosis for number of pauses, which was highly correlated with ACL (r = -0.68) and MCL (r = -0.74). The crossbreeding improved the oviposition pattern. Percent egg laying that occurs between 7:00 and 14:00 was 91.50% (WW), 68.28% (YY), 76.87% (WY), and 79.68% (YW) in the experimental populations. On the other hand, oviposition interval (OI) had negative heterosis in crossbreeds and was negatively correlated with EN35 (r = -0.60). Positive heterosis for egg weight of 2.63% and 3.94% and yolk weight of 4.74% and 6.07% were observed in WY and YW, respectively. Taken together, egg production related traits did not contribute equally to EN heterosis. The AFE and OI exhibited significant correlation with EN indicating that they would be important drivers for EN heterosis.


Subject(s)
Hybrid Vigor , Oviposition , Female , Animals , Chickens/genetics , Hybridization, Genetic , Phenotype
10.
Front Endocrinol (Lausanne) ; 13: 951534, 2022.
Article in English | MEDLINE | ID: mdl-35966096

ABSTRACT

Sexual maturation is fundamental to the reproduction and production performance, heterosis of which has been widely used in animal crossbreeding. However, the underlying mechanism have long remained elusive, despite its profound biological and agricultural significance. In the current study, the reciprocal crossing between White Leghorns and Beijing You chickens were performed to measure the sexual maturation heterosis, and the ovary lncRNAs and mRNAs of purebreds and crossbreeds were profiled to illustrate molecular mechanism of heterosis. Heterosis larger than 20% was found for pubic space and oviduct length, whereas age at first egg showed negative heterosis in both crossbreeds. We identified 1170 known lncRNAs and 1994 putative lncRNAs in chicken ovary using a stringent pipeline. Gene expression pattern showed that nonadditivity was predominant, and the proportion of nonadditive lncRNAs and genes was similar between two crossbreeds, ranging from 44.24% to 49.15%. A total of 200 lncRNAs and 682 genes were shared by two crossbreeds, respectively. GO and KEGG analysis showed that the common genes were significantly enriched in the cell cycle, animal organ development, gonad development, ECM-receptor interaction, calcium signaling pathway and GnRH signaling pathway. Weighted gene co-expression network analysis (WGCNA) identified that 7 out of 20 co-expressed lncRNA-mRNA modules significantly correlated with oviduct length and pubic space. Interestingly, genes harbored in seven modules were also enriched in the similar biological process and pathways, in which nonadditive lncRNAs, such as MSTRG.17017.1 and MSTRG.6475.20, were strongly associated with nonadditive genes, such as CACNA1C and TGFB1 to affect gonad development and GnRH signaling pathway, respectively. Moreover, the results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. Integrated with positive heterosis of serum GnRH and melatonin content detected in crossbreeds, we speculated that nonadditive genes involved in the GnRH signaling pathway elevated the gonad development, leading to the sexual maturation heterosis. We characterized a systematic landscape of ovary lncRNAs and mRNAs related to sexual maturation heterosis in chicken. The quantitative exploration of hybrid transcriptome changes lays foundation for genetic improvement of sexual maturation traits and provides insights into endocrine control of sexual maturation.


Subject(s)
RNA, Long Noncoding , Animals , Chickens/genetics , Chickens/metabolism , Female , Gonadotropin-Releasing Hormone , Hybrid Vigor , Ovary/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sexual Maturation/genetics
11.
Front Cell Infect Microbiol ; 12: 1035711, 2022.
Article in English | MEDLINE | ID: mdl-36825215

ABSTRACT

SARS-CoV-2 causes a spectrum of clinical symptoms from respiratory damage to gastrointestinal disorders. Intestinal infection of SARS-CoV-2 triggers immune response. However, the cellular mechanism that how SARS-CoV-2 initiates and induces intestinal immunity is not understood. Here, we exploited SARS-CoV-2-GFP/ΔN trVLP pseudo-virus system and demonstrated that RIG-I and DHX15 are required for sensing SARS-CoV-2 and inducing cellular immune response through MAVS signaling in intestinal epithelial cells (IECs) upon SARS-CoV-2 infection. NLRP6 also engages in the regulation of SARS-CoV-2 immunity by producing IL-18. Furthermore, primary cellular immune response provoked by SARS-CoV-2 in IECs further cascades activation of MAIT cells and produces cytotoxic cytokines including IFN-γ, granzyme B via an IL-18 dependent mechanism. These findings taken together unveil molecular basis of immune recognition in IECs in response to SARS-CoV-2, and provide insights that intestinal immune cross-talk with other immune cells triggers amplified immunity and probably contributes to immunopathogenesis of COVID-19.


Subject(s)
COVID-19 , Epithelial Cells , Immunity, Innate , Intestines , Humans , COVID-19/immunology , Interleukin-18 , SARS-CoV-2 , Signal Transduction , Epithelial Cells/immunology , Epithelial Cells/virology , Intestines/immunology , Intestines/virology
12.
Phytother Res ; 35(4): 2220-2229, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33350533

ABSTRACT

Atherosclerosis (AS) is a common chronic inflammatory disease of the arteries, which is closely related to dyslipidemia, inflammatory factors, and oxidative stress. Poria cocos polysaccharides (PCP) are one of the main active ingredients of Poria, which has significant pharmacological effects. In this study, the potential protective mechanism of PCP on AS was discussed in the ApoE-/- mice model induced by high-fat diet. These pathological changes were evaluated by H&E and oil red O staining. The levels of pro-inflammatory cytokines in aortic tissue were measured by enzyme-linked immunosorbent assay kit. These protein expressions were detected by Western blot and immunohistochemistry. The results showed that PCP inhibited the serum inflammatory mediators (tumor necrosis factor-α, interleukin-6, and nitric oxide) and lipids (low-density lipoprotein-cholesterol, triglyceride, and total cholesterol) increase. Moreover, PCP also reduced the concentration of malondialdehyde, increased the activity of superoxide dismutase, and improved the pathological changes of the aorta. Finally, PCP inhibited the activation of the TLR4/NF-κB pathway in the aorta and blocked the expression of matrix metalloproteinase 2 and intercellular adhesion molecule 1 proteins. In short, PCP intervenes in AS by reducing inflammatory factors and blood lipid levels.


Subject(s)
Apolipoproteins E/metabolism , Atherosclerosis/drug therapy , Diet, High-Fat/adverse effects , Inflammation/drug therapy , Wolfiporia/chemistry , Animals , Disease Models, Animal , Male , Mice , Signal Transduction
13.
Int Immunopharmacol ; 80: 106173, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31945610

ABSTRACT

Oxidative stress, inflammation, and foam cell formation in vascular smooth muscle cells (VSMCs) are considered to play crucial roles in the pathogenesis of atherosclerosis. Poria cocos polysaccharides (PCP) has been shown to possess anti-inflammatory, antitumor and anti-oxidative properties. In this study we explored the effects of PCP on ox-LDL-induced inflammation, oxidative stress and foam cell formation in VSMCs. PCP significantly attenuated ox-LDL-induced oxidative stress, as evidenced by the decreased reactive oxygen species (ROS) and MDA levels, and the increased SOD activity in VSMCs. PCP suppressed the induction effect of ox-LDL on inflammatory cytokines and inflammatory mediators. PCP also substantially inhibited VSMCs foam cell formation and intracellular lipids accumulation. Mechanistically, PCP suppressed ox-LDL-induced up-regulation of LOX-1, which is responsible for ox-LDL uptake. Western blotting suggested that PCP activated ERK1/2 signaling pathway, increased Nrf2 translocated from cytoplasm to nucleus and heme oxygenase-1 (HO-1) expression. Up-regulation of PCP on Nrf2/HO-1 signaling was reversed by pretreatment with ERK inhibitor PD98059, indicating the involvement of ERK in PCP activation of Nrf2/HO-1 signaling. In conclusion, these results demonstrated that PCP exerted its protection against oxidative stress and inflammation via the ERK/Nrf2/HO-1 signaling pathway and that PCP may be a promising candidate for the therapy of atherosclerosis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Atherosclerosis/drug therapy , Fungal Polysaccharides/pharmacology , Myocytes, Smooth Muscle/drug effects , Signal Transduction/drug effects , Wolfiporia/chemistry , Atherosclerosis/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Foam Cells/drug effects , Foam Cells/immunology , Heme Oxygenase-1/metabolism , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/immunology , Lipoproteins, LDL/immunology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Oxidative Stress/immunology , Reactive Oxygen Species/metabolism , Signal Transduction/immunology
14.
Fundam Clin Pharmacol ; 34(1): 91-101, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31325387

ABSTRACT

Fraxin, the effective component isolated from Cortex Fraxini, has been reported to have anti-inflammation effects. The aim of this study was to explore the effect of fraxin on lipopolysaccharide (LPS)-induced endotoxic shock in mice. We used Kunming male mice to establish the model, and we found that fraxin could improve the survival rate of the LPS-induced mice. Histopathological study showed that fraxin could mitigate the injuries in LPS-induced lung and liver tissues. The levels of tumour necrosis factor-α and interleukin-6 both in serum and lung, liver tissues, and the productions of nitric oxide (NO), aspartate transaminase and alanine transaminase in serum were decreased by fraxin. Western blot assay demonstrated that the pretreatment with fraxin could downregulate LPS-induced protein expressions of nuclear factor-kappa B (NF-κB) and NLRP3 inflammatory corpuscle signalling pathways. Overall, fraxin had protective effects on LPS-induced endotoxic shock mice and the possible mechanisms might activate through NF-κB and NLRP3 inflammatory corpuscle signalling pathways.


Subject(s)
Coumarins/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Shock, Septic/prevention & control , Animals , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Inflammation/pathology , Lipopolysaccharides/toxicity , Male , Mice , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitric Oxide/metabolism , Signal Transduction/drug effects , Survival Rate
15.
Int Immunopharmacol ; 81: 106024, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31784404

ABSTRACT

Acute lung injury (ALI) is a common lung disease accompanied by acute and persistent pulmonary inflammatory response syndrome, which leads to alveolar epithelial cells and capillary endothelial cell damage. Yam glycoprotein, separated from traditional Chinese yam, has been shown to have anti-inflammatory and immunomodulatory effects. In this experiment, we mainly studied the therapeutic effect and mechanism of a glycoprotein on the lipopolysaccharide (LPS)-induced ALI mice. An oral glycoprotein method was used to treat the mouse ALI model induced by LPS injection in the peritoneal cavity. Afterward, we measured the wet/dry (W/D) ratio, the activity of myeloperoxidase (MPO), the oxidative index superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and the production of inflammatory cytokines interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to evaluate the effect of yam glycoprotein on lung tissue changes. We examined the protein expression of TLR4, ASC, NF-κBp65, p-NF-κBp65, Caspase-1, IκB, NLRP3, p-IκB, and ß-actin by western blot analysis. Immunohistochemical analyses of NLRP3 and p-p65 in lung tissue were carried out to assess the mechanism of glycoprotein action. This result suggests that glycoprotein markedly depressed LPS-induced lung W/D ratio, MPO activity, MDA content SOD and GSH-Px depletion, and the contents of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Moreover, glycoprotein blocked TLR4/NF-κBp65 signaling activation and NLRP3inflammasome expression in LPS-induced ALI mice. As this particular study shows, glycoprotein has a safeguarding effects on LPS-induced ALI mice, possibly via activating NLRP3inflammasome and TLR4/NF-κB signaling pathways.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Dioscorea , Glycoproteins/pharmacology , Plant Proteins/pharmacology , Signal Transduction/drug effects , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Glycoproteins/isolation & purification , Glycoproteins/therapeutic use , Humans , Inflammasomes/drug effects , Inflammasomes/immunology , Inflammasomes/metabolism , Lipopolysaccharides/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidation-Reduction/drug effects , Plant Proteins/isolation & purification , Plant Proteins/therapeutic use , Signal Transduction/immunology , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/metabolism
16.
Food Funct ; 10(7): 4001-4009, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31210194

ABSTRACT

Cinnamaldehyde is a flavor isolated from the bark of Cinnamomum cassia Presl and exerts anti-inflammation effects in various diseases. In our study, we investigated the protective effects and the potential mechanism of cinnamaldehyde on atherosclerosis (AS) by using a high fat diet (HFD)-fed ApoE-/- atherosclerotic mouse model. Here, we found that the serum LDL-C, TG and TC levels were elevated and the HDL-C level was decreased in HFD-fed ApoE-/- mice. Cinnamaldehyde treatment significantly decreased inflammatory cytokine (TNF-α, IL-6, NO and MCP-1) overproduction and the serum lipid level. Meanwhile, cinnamaldehyde increased the HDL-C level and down-regulated the activity of lipid peroxidation product MDA in serum. Moreover, cinnamaldehyde reduced the atherosclerotic plaque area in ApoE-/- mice. Furthermore, cinnamaldehyde reduced matrix metalloproteinase-2 (MMP-2) expression and attenuated the high phosphorylation level of IκBα and p65 NF-κB. Overall, our study indicates that cinnamaldehyde may achieve the anti-atherosclerotic effect via the IκB/NF-κB signaling pathway.


Subject(s)
Acrolein/analogs & derivatives , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Diet, High-Fat/adverse effects , I-kappa B Proteins/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Acrolein/pharmacology , Acrolein/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Aorta, Thoracic/pathology , Atherosclerosis/pathology , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cinnamomum aromaticum/chemistry , Cytokines/metabolism , Disease Models, Animal , Male , Malondialdehyde/blood , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-KappaB Inhibitor alpha/metabolism , Nitric Oxide/blood , Phosphorylation , Plant Extracts/pharmacology , Plaque, Atherosclerotic/drug therapy , Transcription Factor RelA/metabolism
17.
Eur J Pharmacol ; 849: 160-169, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30716318

ABSTRACT

Acute kidney injury is a common clinical condition associated with increased morbidity and mortality. It is essential to find effective drugs with low side effects in the treatment of acute kidney injury. Harmine is one of the major active components of Peganum harmala L. Harmine possesses various pharmacological activities, including anti-inflammatory activity. Nevertheless, the protective effect of harmine in acute kidney injury induced by lipopolysaccharide (LPS) in mice is unknown. Therefore, we investigated the protective effect of harmine in LPS-induced renal inflammation and the involved molecular mechanisms. The results showed that pretreatment with harmine (25 or 50 mg/kg) markedly alleviated kidney injury by reducing the release of kidney biomarkers and inflammatory mediators and the formation of malondialdehyde (MDA) and myeloperoxidase (MPO) while increasing superoxide dismutase (SOD) and glutathione (GSH) activities and improving renal histopathological changes. In addition, immunohistochemistry staining and western blot analysis indicated that harmine treatment suppressed the expression of toll-like receptor 4 (TLR4) and the phosphorylation of nuclear factor-kappa B (NF-κB) p65 and inhibitor of κBα (IκBα) while inhibiting the expression of NLRP3, caspase-1 and interleukin-1ß (IL-1ß). In brief, harmine protects against acute kidney injury induced by LPS in mice through reducing oxidative stress and inflammation responses. The involved underlying mechanisms of harmine in LPS-induced acute kidney injury might be related to inhibition of the TLR4-NF-κB pathway and NLRP3 inflammasome pathway. Based on the above conclusion, it is possible for harmine to be used to clinically treat acute kidney injury.


Subject(s)
Acute Kidney Injury/drug therapy , Harmine/pharmacology , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Harmine/therapeutic use , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Mice , Signal Transduction/drug effects
18.
Int Immunopharmacol ; 67: 1-12, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30530164

ABSTRACT

Fraxin, the effective component of the Chinese traditional medicine Cortex Fraxini, is reported to have anti-inflammatory effects. This study assessed the anti-inflammatory effect of fraxin on the lipopolysaccharide (LPS)-induced inflammatory response in A549 cells and the protective efficacy on LPS-induced acute lung injury (ALI) in mice. Fraxin reduced LPS-induced TNF-α, IL-6 and IL-1ß production in A549 cells and alleviated the LPS-induced wet/dry (W/D) weight ratio and the effects observed via histopathological examination of the lung in vivo. Furthermore, fraxin reduced the protein concentrations in the broncho-alveolar lavage (BAL) fluid and cytokine production in the sera. Fraxin also clearly attenuated the oxidation index, including the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). Immunohistochemistry analysis showed that fraxin suppressed LPS-induced inflammatory damage. The expression of proteins involved in the NF-κB and NLRP3 inflammatory corpuscle signalling pathways was consistent between the lung tissues and cell samples. Overall, fraxin played a protective role in LPS-induced lung injury by inhibiting the NF-κB and NLRP3 signalling pathways.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Coumarins/therapeutic use , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respiratory Mucosa/drug effects , A549 Cells , Acute Lung Injury/chemically induced , Animals , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Male , Medicine, Chinese Traditional , Mice , Mice, Inbred Strains , Oxidation-Reduction/drug effects , Peroxidase/metabolism , Respiratory Mucosa/pathology , Signal Transduction
19.
Vascul Pharmacol ; 108: 57-66, 2018 09.
Article in English | MEDLINE | ID: mdl-29777873

ABSTRACT

Cinnamaldehyde (Cin), as a traditional flavor constituent isolated from the bark of Cinnamonum cassia Presl, has been commonly used for - digestive, cardiovascular and immune system diseases. The pathology of vascular smooth muscle cells (VSMCs) accelerated the progression of atherosclerosis. In our study, we found that cinnamaldehyde significantly suppressed ox-LDL-induced VSMCs proliferation, migration and inflammatory cytokine overproduction, as well as foam cell formation in VSMCs and macrophages. Moreover, cinnamaldehyde inhibited the phosphorylation of p38, JNK and p65 NF-κB and increased heme oxygenase-1 (HO-1) activity. In addition, cinnamaldehyde reduced monocyte chemotactic protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2) and lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) expression. Furthermore, cinnamaldehyde arrested cell cycle in S phase. Thus, results indicated that cinnamaldehyde antagonized the ox-LDL-induced VSMCs proliferation, migration, inflammation and foam cell formation through regulation of HO-1, MMP-2, LOX-1 and blockage of cell cycle, and - suppression of p38, JNK/MAPK and NF-κB signaling pathways.


Subject(s)
Acrolein/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Lipoproteins, LDL/toxicity , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Transcription Factor RelA/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Acrolein/pharmacology , Animals , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , Female , Foam Cells/drug effects , Foam Cells/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Mice , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , Phosphorylation , Rats, Sprague-Dawley , Scavenger Receptors, Class E/metabolism , Signal Transduction/drug effects , Time Factors
20.
Inflammation ; 41(3): 996-1007, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29541888

ABSTRACT

Nobiletin (NOB), a citrus polymethoxy flavonoid, has been reported to exhibit anti-inflammatory, anti-cancer, and anti-insulin resistance activities. Although the anti-inflammatory activity of NOB already reported, its involvement in lung protection has not been reported. Thus, this study aimed to investigate the anti-inflammatory response of NOB in lipopolysaccharide (LPS)-stimulated A549 cells and LPS-induced acute lung injury (ALI) in mice. The animals were pre-treated with NOB (5, 10, and 20 mg/kg) or DEX (5 mg/kg) at 12 and 1 h before intranasal instillation of LPS. The severity of pulmonary injury was evaluated 6 h after LPS administration. Results suggested that treatment with NOB dramatically attenuated lung histopathological changes, wet-to-dry (W/D) ratio, myeloperoxidase (MPO) activity, the numbers of inflammatory cells, and TNF-α, IL-6, and NO in BALF induced by LPS. Furthermore, NOB also significantly inhibited the expression of iNOS and the phosphorylation of NF-κBp65 and IκBα. In vitro, NOB inhibited NF-κB activation and TNF-α, IL-6 production in LPS-stimulated A549 cells. Taken together, these results indicated that NOB exhibited a protective effect on ALI, and the possible mechanism is involved in inhibiting NF-κB activation, subsequently inhibiting LPS-induced inflammatory response.


Subject(s)
Acute Lung Injury/drug therapy , Flavones/pharmacology , Inflammation/drug therapy , NF-kappa B/antagonists & inhibitors , A549 Cells , Animals , Antioxidants/pharmacology , Flavones/therapeutic use , Humans , Inflammation/chemically induced , Interleukin-6/metabolism , Lipopolysaccharides , Mice , NF-kappa B/metabolism , Protective Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...