Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 926621, 2022.
Article in English | MEDLINE | ID: mdl-35845685

ABSTRACT

Fusarium head blight, mainly incited by Fusarium graminearum, is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites. To determine the relationship between BNL and FHB resistance, leaf tissue of a resistant wheat cultivar Sumai 3 was inoculated with four different F. graminearum isolates. Integrated metabolomic and transcriptomic analyses of the inoculated samples suggested that the phytohormone signaling, phenolamine, and flavonoid metabolic pathways played important roles in BNL formation that restricted F. graminearum extension. Exogenous application of flavonoid metabolites on wheat detached leaves revealed the possible contribution of flavonoids to BNL formation. Exogenous treatment of either salicylic acid (SA) or methyl jasmonate (MeJA) on wheat spikes significantly reduced the FHB severity. However, exogenous MeJA treatment prevented the BNL formation on the detached leaves of FHB-resistant wheat Sumai 3. SA signaling pathway influenced reactive oxygen species (ROS) burst to enhance BNL formation to reduce FHB severity. Three key genes in SA biosynthesis and signal transduction pathway, TaICS1, TaNPR1, and TaNPR3, positively regulated FHB resistance in wheat. A complex temporal interaction that contributed to wheat FHB resistance was detected between the SA and JA signaling pathways. Knowledge of BNLs extends our understanding of the molecular mechanisms of FHB resistance in wheat and will benefit the genetic improvement of wheat FHB resistance.

2.
Environ Sci Pollut Res Int ; 28(13): 16616-16632, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33392986

ABSTRACT

Sediment resuspension is critical to the internal nutrient loading in aquatic systems. Turbidity is commonly used as an indicator for sediment resuspension and is proved to be highly correlated to wind speed in large shallow lakes. A field observation of wind speed and turbidity was conducted using a portable weather station and a YSI 6600V2-2, and an observation lasting for 39 days was evaluated in this study (the data points with wind speed > 4 m/s account for 75%). The daily average values (DA dataset) as well as daily maximum (MX dataset) and minimum values (MI dataset) were calculated from the instantaneous observations (IN dataset). Correlations in IN dataset were deduced based on machine learning methods and were compared to those obtained from DA, MI, and MX datasets. Furthermore, the correlation in IN dataset was analyzed by using two statistical methods, and from the view of statistical the turbidity is regarded as a variable. Results indicate that the correlations in IN datasets follow the exponential function or power function pattern with a critical wind speed of 6 m/s, Regression on IN dataset revealed that linear regression model had the best performance on predicting the turbidity in test dataset and no significant differences are observed between exponential function and power function pattern. Correlations in DA and MX datasets exhibit higher maximal information coefficient (MIC) than IN dataset and error of turbidity prediction introduced by using these correlations in IN dataset is within the tolerance level. Statistical analysis on the IN dataset shows that a strong relationship exists among the wind speed and expectation of turbidity with a MIC over 0.99, and follows the exponential function or the power function as well with a different critical wind speed of 4 m/s. Over 95% data points fall in the predicted intervals of turbidity for both methods, suggesting a high predicting accuracy.


Subject(s)
Lakes , Wind , China , Environmental Monitoring , Eutrophication , Geologic Sediments
3.
J Integr Plant Biol ; 63(2): 340-352, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32678930

ABSTRACT

Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schw.) Perch) results in large yield losses in annual global wheat production. Although studies have identified a number of wheat FHB resistance genes, a deeper understanding of the mechanisms underlying host plant resistance to F. graminearum is required for the control of FHB. Here, an integrated metabolomics and transcriptomics analysis of infected wheat plants (Triticum aestivum L.) enabled identification of 789 differentially accumulated metabolites, including flavonoids, phenolamides, tryptamine derivatives, and phytohormones, and revealed altered expression of more than 100 genes that function in the biosynthesis or regulation of these pathways. Our data regarding the effects of F. graminearum infection on flavonoids and auxin signaling led to follow-up experiments that showed that exogenous kaempferide and apigenin application on spikes increased wheat resistance to FHB, while exogenous auxin treatment increased FHB susceptibility. RNAi-mediated knockdown of the gene encoding the auxin receptor, TaTIR1, increased FHB resistance. Our data supported the use of TaTIR1 knockdown in controlling FHB. Our study provides insights on the wheat response to F. graminearum infection and its FHB resistance mechanisms while illustrating the potential of TaTIR1 knockdown in increasing FHB resistance during crop improvement programs.


Subject(s)
Fusarium/physiology , Indoleacetic Acids/metabolism , Metabolomics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Triticum/immunology , Triticum/microbiology , Benzamides/metabolism , Biosynthetic Pathways/genetics , Disease Resistance/genetics , Flavonoids/metabolism , Gene Silencing/drug effects , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Reproducibility of Results , Signal Transduction , Triticum/genetics , Triticum/metabolism , Tryptamines/metabolism
4.
BMC Plant Biol ; 20(1): 392, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32847515

ABSTRACT

BACKGROUND: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response. RESULTS: In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress. CONCLUSIONS: The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.


Subject(s)
Oxidative Stress/genetics , Peroxidases/genetics , Salt Stress/genetics , Salt Tolerance/genetics , Triticum/genetics , Triticum/physiology , China , Gene Expression Regulation, Plant , Oxidative Stress/physiology , Peroxidases/metabolism , Salt Stress/physiology , Salt Tolerance/physiology
5.
Science ; 368(6493)2020 05 22.
Article in English | MEDLINE | ID: mdl-32273397

ABSTRACT

Fusarium head blight (FHB), a fungal disease caused by Fusarium species that produce food toxins, currently devastates wheat production worldwide, yet few resistance resources have been discovered in wheat germplasm. Here, we cloned the FHB resistance gene Fhb7 by assembling the genome of Thinopyrum elongatum, a species used in wheat distant hybridization breeding. Fhb7 encodes a glutathione S-transferase (GST) and confers broad resistance to Fusarium species by detoxifying trichothecenes through de-epoxidation. Fhb7 GST homologs are absent in plants, and our evidence supports that Th. elongatum has gained Fhb7 through horizontal gene transfer (HGT) from an endophytic Epichloë species. Fhb7 introgressions in wheat confers resistance to both FHB and crown rot in diverse wheat backgrounds without yield penalty, providing a solution for Fusarium resistance breeding.


Subject(s)
Disease Resistance/genetics , Epichloe/genetics , Fusarium/pathogenicity , Gene Transfer, Horizontal , Glutathione Transferase/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Cloning, Molecular , Plant Breeding , Poaceae/genetics
6.
Int J Mol Sci ; 21(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218159

ABSTRACT

Plant epidermis serves important functions in shoot growth, plant defense and lipid metabolism, though mechanisms of related transcriptional regulation are largely unknown. Here, we identified cis-elements specific to shoot epidermis expression by dissecting the promoter of Triticum aestivum lipid transfer protein 1 (TaLTP1). A preliminary promoter deletion analysis revealed that a truncated fragment within 400 bp upstream from the translation start site was sufficient to confer conserved epidermis-specific expression in transgenic Brachypodium distachyon and Arabidopsis thaliana. Further, deletion or mutation of a GC(N4)GGCC motif at position -380 bp caused a loss of expression in pavement cells. With an electrophoretic mobility shift assay (EMSA) and transgenic reporter assay, we found that a light-responsive CcATC motif at position -268 bp was also involved in regulating pavement cell-specific expression that is evolutionary conserved. Moreover, expression specific to leaf trichome cells was found to be independently regulated by a CCaacAt motif at position -303 bp.


Subject(s)
Gene Expression Regulation, Plant , Plant Epidermis/genetics , Promoter Regions, Genetic , Triticum/genetics , Arabidopsis , Base Sequence , Brachypodium , Plant Epidermis/metabolism , Plants, Genetically Modified , Sequence Alignment , Sequence Analysis, DNA
7.
Proc Natl Acad Sci U S A ; 117(11): 5955-5963, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123089

ABSTRACT

In plants, the mechanism for ecological sympatric speciation (SS) is little known. Here, after ruling out the possibility of secondary contact, we show that wild emmer wheat, at the microclimatically divergent microsite of "Evolution Canyon" (EC), Mt. Carmel, Israel, underwent triple SS. Initially, it split following a bottleneck of an ancestral population, and further diversified to three isolated populations driven by disruptive ecological selection. Remarkably, two postzygotically isolated populations (SFS1 and SFS2) sympatrically branched within an area less than 30 m at the tropical hot and dry savannoid south-facing slope (SFS). A series of homozygous chromosomal rearrangements in the SFS1 population caused hybrid sterility with the SFS2 population. We demonstrate that these two populations developed divergent adaptive mechanisms against severe abiotic stresses on the tropical SFS. The SFS2 population evolved very early flowering, while the SFS1 population alternatively evolved a direct tolerance to irradiance by improved ROS scavenging activity that potentially accounts for its evolutionary fate with unstable chromosome status. Moreover, a third prezygotically isolated sympatric population adapted on the abutting temperate, humid, cool, and forested north-facing slope (NFS), separated by 250 m from the SFS wild emmer wheat populations. The NFS population evolved multiple resistant loci to fungal diseases, including powdery mildew and stripe rust. Our study illustrates how plants sympatrically adapt and speciate under disruptive ecological selection of abiotic and biotic stresses.


Subject(s)
Disease Resistance/genetics , Sympatry/genetics , Triticum/genetics , Ascomycota , Basidiomycota , Chromosomes, Plant , Gene Flow , Genes, Plant/genetics , Homozygote , Israel , Karyotyping , Plant Diseases/microbiology , Stress, Physiological
8.
Org Lett ; 21(8): 2890-2893, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30958680

ABSTRACT

A copper-catalyzed direct aminosulfonylation of unactivated alkenes with sodium sulfinates for the efficient synthesis of sulfonylated pyrrolidones is described. This reaction features good functional group tolerance and wide substrate scope, providing an efficient and straightforward protocol to access this kind of pyrrolidones. Moreover, preliminary mechanistic investigations disclosed that a free-radical pathway might be invovled in the process.

9.
Org Lett ; 20(19): 6198-6201, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30226060

ABSTRACT

A selective O-cyclization of N-methoxy aryl amides with CH2Br2 or 1,2-DCE (1,2-dichloroethane) via palladium-catalyzed C-H activation has been described. New C(sp3)-O and C(sp2)-C(sp3) bonds are forged simultaneously with the assistance of an N-methoxy amide group, and good functional group tolerance in substrates is observed. Preliminary mechanistic investigations show that the process may involve a five-membered palladacycle intermediate.

SELECTION OF CITATIONS
SEARCH DETAIL
...