Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pflugers Arch ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940824

ABSTRACT

Chronic cerebral ischemia (CCI) is a common neurological disorder, characterized by progressive cognitive impairment. Acupoint catgut embedding (ACE) represents a modern acupuncture form that has shown neuroprotective effects; nevertheless, its effects on CCI and the mechanisms remain largely unknown. Here, we aimed to explore the therapeutic action of ACE in CCI-induced cognitive impairment and its mechanisms. The cognitive function of CCI rats was determined using Morris water maze test, and histopathological changes in the brain were assessed through hematoxylin-eosin (HE) staining. To further explore the molecular mechanisms, the expression levels of oxidative stress markers and the Ang II/AT1R/NOX axis-associated molecules in the hippocampus were evaluated using enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry. Here, we observed that ACE treatment alleviated cognitive dysfunction and histopathological injury in CCI rats. Intriguingly, candesartan (an AT1R blocker) enhanced the beneficial effects of ACE on ameliorating cognitive impairment in CCI rats. Mechanistically, ACE treatment blocked the Ang II/AT1R/NOX pathway and subsequently suppressed oxidative stress, thus mitigating cognitive impairment in CCI. Our findings first reveal that ACE treatment could suppress cognitive impairment in CCI, which might be partly due to the suppression of Ang II/AT1R/NOX axis.

2.
Toxics ; 11(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37999573

ABSTRACT

Respiratory diseases have been proven to be directly related to air pollutants. Xuanwei, located in South China, has been known to have the highest mortality rate for lung cancer in China because of the air pollutants emitted through local coal combustion. However, the mechanism of lung cancer induced by air pollutants is not clear. Based on the fact that a large number of iron-bearing mineral particles was found in Xuanwei coal combustion particles, the iron-containing particles were hypothesized to play important roles in the pathogenesis of the high incidence rate of lung cancer in this area. In this study, raw coal samples were collected from a coal mine in the Xuanwei area. Size-resolved particles emitted from the raw coal samples were collected using an Anderson high-volume sampler. Mineralogical characterization and an assessment of the oxidative potential of the iron-containing particles were conducted using cutting-edge technologies, and the biological activity of the particles were evaluated via DTT assay. Our data showed that the iron-containing minerals accounted for more than 10% of the measured particles emitted from Xuanwei coal combustion samples. The content analysis of ·OH generated from Xuanwei coal combustion particles showed that ·OH content was dependent on the size of particles in the surrogated lung fluid. The concentration of ·OH increased as the particle size decreased. The DTT assay data further demonstrated that when the mass concentration of dissolved irons increased, the oxidation potential of the particles increased. The highest proportion of divalent iron in the total dissolved iron was found in the submicron particles in low pH solution(pH = 1), which indicated that the oxidative potential induced by submicron particles was stronger than that induced by coarse particles and fine particles. Armed with the above data, the toxicological mechanism of the iron-containing mineral particles can be investigated further.

3.
J Cell Mol Med ; 27(8): 1023-1031, 2023 04.
Article in English | MEDLINE | ID: mdl-36883311

ABSTRACT

Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.


Subject(s)
Chromosomal Proteins, Non-Histone , Neoplasms , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Neoplasms/pathology , Mutation/genetics , Carcinogenesis/genetics , Chromatin Assembly and Disassembly/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...