Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36212946

ABSTRACT

The PVF Tedlar is widely used for gas collection in clinical diagnostics and environmental research. However, sample collection is frequently associated with the degradation, adsorption, or transformation of sensitive chemicals. Here, we explore to what extent the Tedlar bag collection effects the composition of expired breath samples. Collected breath samples were analyzed using the EESI-MS technique after the storage time of 30 min, 1 h, 2 h, 3 h, 4 h, 5 h, and 6 h, respectively. Our results demonstrated the gradual MS signal decay after 3 h storage. The decay rate of 3 h is about 45% and 6 h is about 88%. Therefore, the Tedlar bag is suggested as a reliable breath holder on the time scale of <3 h.

2.
Sci Rep ; 5: 8725, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25735640

ABSTRACT

Exhaled nitric oxide (eNO) is a useful biomarker of various physiological conditions, including asthma and other pulmonary diseases. Herein a fast and sensitive analytical method has been developed for the quantitative detection of eNO based on extractive electrospray ionization mass spectrometry (EESI-MS). Exhaled NO molecules selectively reacted with 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) reagent, and eNO concentration was derived based on the EESI-MS response of 1-oxyl-2-phenyl-4, 4, 5, 5-tetramethylimidazoline (PTI) product. The method allowed quantification of eNO below ppb level (~0.02 ppbv) with a relative standard deviation (RSD) of 11.6%. In addition, eNO levels of 20 volunteers were monitored by EESI-MS over the time period of 10 hrs. Long-term eNO response to smoking a cigarette was recorded, and the observed time-dependent profile was discussed. This work extends the application of EESI-MS to small molecules (<30 Da) with low proton affinity and collision-induced dissociation efficiency, which are usually poorly visible by conventional ion trap mass spectrometers. Long-term quantitative profiling of eNO by EESI-MS opens new possibilities for the research of human metabolism and clinical diagnosis.


Subject(s)
Exhalation , Nitric Oxide/analysis , Smoking , Spectrometry, Mass, Electrospray Ionization/methods , Algorithms , Breath Tests/methods , Cyclic N-Oxides/chemistry , Humans , Imidazoles/chemistry , Models, Chemical , Nitric Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL