Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Colloid Interface Sci ; 664: 146-155, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460380

ABSTRACT

The imbalances of storage capacity and reaction kinetics between carbonaceous cathodes and zinc (Zn) anodes restrict the widespread application of Zn-ion hybrid capacitor (ZIHC). Structure optimization is a promising strategy for carbon materials to achieve sufficient Zn2+ storage sites and satisfied ion-electron kinetics. Herein, porous graphitic carbon nanosheets (PGCN) were simply synthesized using a K3[Fe(C2O4)3]- and urea-assisted foaming strategy with polyvinylpyrrolidone as carbon precursor, followed by activation and graphitization. Sufficient pores with well-matched pore sizes (0.80-1.94 nm) distributed across the carbon nanosheets can effectively shorten mass-transfer distance, promoting accessibility to active sites. A partially graphitic carbon structure with high graphitization degree can accelerate electron transfer. Furthermore, high nitrogen doping (7.2 at.%) provides additional Zn2+ storage sites to increase storage capacity. Consequently, a PGCN-based ZIHC has an exceptional specific capacity of 181 mAh g-1 at 0.5 A g-1, superb energy density of 145 Wh kg-1, and excellent cycling ability without capacity decay over 10,000 cycles. In addition, the flexible solid-state device assembled with PGCN exhibits excellent electrochemical performances even when bent at various angles. This study proposes a straightforward and economical strategy to construct porous graphitic carbon nanosheets with enhanced storage capacity and fast reaction kinetics for the high performance of ZIHC.

2.
Theor Appl Genet ; 137(2): 36, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291310

ABSTRACT

KEY MESSAGE: A total of 90,000 capture probes derived from wheat and Thinopyrum elongatum were integrated into one chip, which served as an economical genotype for explorating Thinopyrumspecies and their derivatives. Thinopyrum species play a crucial role as a source of new genetic variations for enhancing wheat traits, including resistance to both abiotic and biotic factors. Accurate identification of exogenous chromosome(s) or chromosome segments or genes is essential following the introduction of alien genetic material into wheat, but this task remains challenging. This study aimed to develop a high-resolution wheat-Thinopyrum elongatum array, named GenoBaits®WheatplusEE, to trace alien genetic information by genotyping using a target sequencing system. This GenoBaits®WheatplusEE array included 90,000 capture probes derived from two species and integrated into one chip, with 10,000 and 80,000 originating from wheat and Th. elongatum, respectively. The capture probes were strategically positioned in genes and evenly distributed across the genome, facilitating the development of a roadmap for identifying each alien gene. The array was applied to the high-throughput identification of the alien chromosomes or segments in Thinopyrum and distantly related species and their derivatives. Our results demonstrated that the GenoBaits®WheatplusEE array could be used for direct identification of the breakpoint of alien segments, determine copy number of alien chromosomes, and reveal variations in wheat chromosomes by a single round of target sequencing of the sample. Additionally, we could efficiently and cost-effectively genotype, supporting the exploration of subgenome composition, phylogenetic relationships, and polymorphisms in essential genes (e.g., Fhb7 gene) among Thinopyrum species and their derivatives. We hope that GenoBaits®WheatplusEE will become a widely adopted tool for exporting wild germplasm for wheat improvement in the future.


Subject(s)
Poaceae , Triticum , Triticum/genetics , Phylogeny , Poaceae/genetics , Phenotype , Polymorphism, Genetic
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047699

ABSTRACT

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Poaceae/genetics , Disease Resistance/genetics , Hybridization, Genetic , Plant Diseases/genetics
4.
Microb Pathog ; 179: 106097, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062491

ABSTRACT

Giardia duodenum (G. duodenalis) can cause giardiasis and infect a variety of hosts. So far, there have been no detailed data regarding the positive rate of G. duodenalis in sheep and goats in China. Here, a systematic literature review was carried out to investigate the epidemiology of G. duodenalis in sheep and goats in China. To perform the meta-analysis, the databases CNKI, VIP, WanFang, PubMed, Web of science and ScienceDirect were employed for screening studies related to the prevalence of G. duodenalis in sheep and goats in China. The total prevalence of G. duodenalis in sheep and goats was estimated to be 7.00% (95% CI: 4.00-10.00). In the age subgroup, the prevalence of G. duodenalis in sheep and goats of >12 months (11.29%; 95% CI: 8.08-14.97) was higher than that in sheep and goats of ≤12 months (7.57%; 95% CI: 3.95-12.24). An analysis based on seasons showed that the prevalence of G. duodenalis in sheep and goats was higher in summer (11.90%; 95% CI: 0.50-35.05) than that in other seasons. The prevalence of G. duodenalis in sheep and goats after 2016 was 8.57% (95% CI: 5.34-11.79), which was higher than others. The highest prevalence of G. duodenalis in sheep and goats was 13.06% (95% CI: 6.26-19.86) recorded in Southwestern China. The prevalence of Giardia infection in sheep (7.28%; 95% CI: 2.30-14.73) was higher than that in goats (5.43%; 95% CI: 2.73-8.98). The NOAA's National Center for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly) was used to extract relevant geoclimatic data (latitude, longitude, elevation, temperature, precipitation, humidity, and climate). By analyzing the data of each subgroup, it was shown that region, genetype, and climate were potential risk factors for giardiasis prevalence in sheep and goats. Based on the analysis of common factors and geographical factors, it is recommended to strengthen effective management measures (e.g. ventilation and disinfection in warm and humid areas) and formulate relevant policies according to local conditions. Breeders should strengthen the detection of G. duodenalis in sheep and goats, customize corresponding control measures according to the diet and living habits of sheep and goats, and strengthen the protection of sheep and lamb calves, so as to reduce the incidence rate and reduce the economic loss of China's animal husbandry.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Sheep , Giardiasis/epidemiology , Giardiasis/veterinary , Goats , Prevalence , China/epidemiology , Feces , Genotype
5.
Sci Total Environ ; 858(Pt 1): 159693, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36302407

ABSTRACT

Frequent exchange of surface water and groundwater occurs in arid/semi-arid areas due to high evaporation and intensive irrigation activities, affecting the migration and transformation of per- and polyfluoroalkyl substances (PFASs) and threatening drinking water safety. This study analyzed legacy PFASs and potential precursors in surface water, groundwater, soil, and aquifer solid samples collected from a typical arid area, the Hetao Irrigation District of Northern China, to explore PFASs distribution and transformation between surface and ground. Total PFASs (ΣPFASs) in surface water was 29-232 ng/L, higher than 2-77 ng/L in groundwater. ΣPFASs in soil were 0.29-0.59 ng/g, higher than 0.09-0.27 in the aquifer solids. Regarding horizontal distribution, the concentration of PFASs in groundwater increased in downtowns and the areas recharged with lake water. In terms of vertical distribution, ΣPFASs decreased with the increase of depth, and more PFASs adsorbed on clay particles in the aquifer. The total oxidable precursor analysis showed that 8:2 FT and 4:2 FT were the dominant precursors of PFASs, resulting in an increment of 0.1-4 ng/L PFASs. Hydrogen and oxygen stable isotope compositions suggest similar sources between surface water and groundwater in the study area, while principal component analysis and Bayesian inference also indicate that surface water is an important source of groundwater PFASs. The annual infiltration PFASs to groundwater from Ulansuhai was estimated by the water balance approach to be 9.39 kg. Results highlight the influence of agricultural irrigation activities and lake infiltration on groundwater PFASs in the arid region.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Bayes Theorem , Water Pollutants, Chemical/analysis , Soil , Lakes , Water/analysis , China , Environmental Monitoring/methods
6.
Front Plant Sci ; 13: 1012939, 2022.
Article in English | MEDLINE | ID: mdl-36407596

ABSTRACT

Leymus mollis (Trin.) Pilg. (2n = 4x = 28, NsNsXmXm) potentially harbours useful genes that might contribute to the improvement of wheat. We describe M862 as a novel wheat-L. mollis alien disomic substitution line from a cross between wheat cv. 7182 and octoploid Tritileymus M47. Cytological observations indicate that M862 has a chromosome constitution of 2n = 42 = 21II. Two 4D chromosomes of wheat substituted by two L. mollis Ns chromosomes were observed, using the GISH and ND-FISH analyses. Molecular marker, 55K SNP array and wheat-P. huashanica liquid array (GenoBaits®WheatplusPh) analyses further indicate that the alien chromosomes are L. mollis 4Ns. Therefore, it was deduced that M862 was a wheat-L. mollis 4Ns(4D) alien disomic substitution line. There were also changes in chromosomes 1A, 1D, 2B and 5A detected by ND-FISH analysis. Transcriptome sequencing showed that the structural variation of 1D, 1A and 5A may have smaller impact on gene expression than that for 2B. In addition, a total of 16 markers derived from Lm#4Ns were developed from transcriptome sequences, and these proved to be highly effective for tracking the introduced chromosome. M862 showed reduced height, larger grains (weight and width), and was highly resistance to CYR32 and CYR34 stripe rust races at the seedling stage and mixed stripe rust races (CYR32, CYR33 and CYR34) at the adult stage. It was also resistance to Fusarium head blight (FHB). This alien disomic substitution line M862 may be exploited as an important genetic material in the domestication of stipe rust and FHB resistance wheat varieties.

7.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682692

ABSTRACT

The grain aphid Sitobion avenae (Fabricius) is one of the most destructive pests of wheat (Triticum aestivum). Deployment of resistant wheat germplasm appears as an excellent solution for this problem. Elite bread wheat cultivars only have limited resistance to this pest. The present study was carried out to investigate the potential of the tetraploid wheat (Triticum turgidum) variety Lanmai, which showed high resistance to S. avenae at both seedling and adult plant stages, as a source of resistance genes. Based on apterous adult aphids' fecundity tests and choice bioassays, Lanmai has been shown to display antixenosis and antibiosis. Suppression subtractive hybridization (SSH) was employed to identify and isolate the putative candidate defense genes in Lanmai against S. avenae infestation. A total of 134 expressed sequence tags (ESTs) were identified and categorized based on their putative functions. RT-qPCR analysis of 30 selected genes confirmed their differential expression over time between the resistant wheat variety Lanmai and susceptible wheat variety Polan305 during S. avenae infestation. There were 11 genes related to the photosynthesis process, and only 3 genes showed higher expression in Lanmai than in Polan305 after S. avenae infestation. Gene expression analysis also revealed that Lanmai played a critical role in salicylic acid and jasmonic acid pathways after S. avenae infestation. This study provided further insights into the role of defense signaling networks in wheat resistance to S. avenae and indicates that the resistant tetraploid wheat variety Lanmai may provide a valuable resource for aphid tolerance improvement in wheat.


Subject(s)
Aphids , Animals , Antibiosis , Salicylic Acid , Tetraploidy , Triticum/genetics
8.
BMC Plant Biol ; 22(1): 111, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279089

ABSTRACT

BACKGROUND: Owing to their excellent resistance to abiotic and biotic stress, Thinopyrum intermedium (2n = 6x = 42, JJJsJsStSt) and Th. ponticum (2n = 10x = 70) are both widely utilized in wheat germplasm innovation programs. Disomic substitution lines (DSLs) carrying one pair of alien chromosomes are valuable bridge materials for transmission of novel genes, fluorescence in situ hybridization (FISH) karyotype construction and specific molecular marker development. RESULTS: Six wheat-Thinopyrum DSLs derived from crosses between Abbondanza nullisomic lines (2n = 40) and two octoploid Trititrigia lines (2n = 8x = 56), were characterized by sequential FISH-genome in situ hybridization (GISH), multicolor GISH (mc-GISH), and an analysis of the wheat 15 K SNP array combined with molecular marker selection. ES-9 (DS2St (2A)) and ES-10 (DS3St (3D)) are wheat-Th. ponticum DSLs, while ES-23 (DS2St (2A)), ES-24 (DS3St (3D)), ES-25(DS2St (2B)), and ES-26 (DS2St (2D)) are wheat-Th. intermedium DSLs. ES-9, ES-23, ES-25 and ES-26 conferred high thousand-kernel weight and stripe rust resistance at adult stages, while ES-10 and ES-24 were highly resistant to stripe rust at all stages. Furthermore, cytological analysis showed that the alien chromosomes belonging to the same homoeologous group (2 or 3) derived from different donors carried the same FISH karyotype and could form a bivalent. Based on specific-locus amplified fragment sequencing (SLAF-seq), two 2St-chromosome-specific markers (PTH-005 and PTH-013) and two 3St-chromosome-specific markers (PTH-113 and PTH-135) were developed. CONCLUSIONS: The six wheat-Thinopyrum DSLs conferring stripe rust resistance can be used as bridging parents for transmission of valuable resistance genes. The utility of PTH-113 and PTH-135 in a BC1F2 population showed that the newly developed markers could be useful tools for efficient identification of St chromosomes in a common wheat background.


Subject(s)
Chromosomes, Plant , Disease Resistance/genetics , Genetic Markers , Poaceae/genetics , Poaceae/microbiology , Puccinia/pathogenicity , Triticum/genetics , Triticum/microbiology , Cytogenetic Analysis , Genetic Variation , Genotype
9.
Theor Appl Genet ; 135(6): 1867-1877, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35357527

ABSTRACT

KEY MESSAGE: A novel major QTL for FHB resistance was mapped to a 6.8 Mb region on chromosome 2D in a Chinese wheat cultivar Ji5265, and diagnostic KASP markers were developed for detecting it in a worldwide wheat collection. Fusarium head blight (FHB) is a serious disease in wheat (Triticum aestivum L.) and causes significant reductions in grain yield and quality worldwide. Breeding for FHB resistance is the most effective strategy to minimize the losses caused by FHB; therefore, identification of major quantitative trait loci (QTLs) conferring FHB resistance and development of diagnostic markers for the QTLs are prerequisites for marker-assisted selection (MAS). Ji5265 is a Chinese wheat cultivar resistant to FHB in multiple environments. An F6 population of 179 recombinant inbred lines (RILs) was developed from Ji5265 × Wheaton. The population was genotyped by genotyping-by-sequencing (GBS) and phenotyped for FHB Type II resistance in greenhouses. A major QTL, designated as QFhb-2DL, was mapped in a 6.8 Mb region between the markers GBS10238 and GBS12056 on the long arm of chromosome 2D in Ji5265 and explained ~ 30% of the phenotypic variation for FHB resistance. The effect of QFhb-2DL on FHB resistance was validated using near-isogenic lines (NILs) derived from residual heterozygotes from an F6 RIL of Ji5265 × Wheaton. The two flanking markers were converted into Kompetitive allele-specific PCR (KASP) markers (KASP10238 and KASP12056) and validated to be diagnostic in a collection of 2,065 wheat accessions. These results indicate that QFhb-2DL is a novel major QTL for resistance to FHB spread within a spike (Type II) and the two KASP markers can be used for MAS to improve wheat FHB resistance in wheat breeding programs.


Subject(s)
Fusarium , China , Chromosome Mapping , Plant Breeding , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics
10.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269816

ABSTRACT

Leymus mollis (2n = 4x = 28, NsNsXmXm), a wild relative of common wheat (Triticum aestivum L.), carries numerous loci which could potentially be used in wheat improvement. In this study, line 17DM48 was isolated from the progeny of a wheat and L. mollis hybrid. This line has 42 chromosomes forming 21 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) demonstrated the presence of a pair chromosomes from the Ns genome of L. mollis. This pair substituted for wheat chromosome 2D, as shown by fluorescence in situ hybridization (FISH), DNA marker analysis, and hybridization to wheat 55K SNP array. Therefore, 17DM48 is a wheat-L. mollis 2Ns (2D) disomic substitution line. It shows longer spike and a high level of stripe rust resistance. Using specific-locus amplified fragment sequencing (SLAF-seq), 13 DNA markers were developed to identify and trace chromosome 2Ns of L. mollis in wheat background. This line provides a potential bridge germplasm for genetic improvement of wheat stripe rust resistance.


Subject(s)
Basidiomycota , Triticum , Basidiomycota/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genetic Markers , In Situ Hybridization, Fluorescence , Plant Diseases/genetics , Poaceae/genetics , Triticum/genetics
11.
Ann Oper Res ; 310(1): 49-87, 2022.
Article in English | MEDLINE | ID: mdl-33654338

ABSTRACT

In the spot market for air cargo, airlines typically adopt dynamic pricing to tackle demand uncertainty, for which it is difficult to accurately estimate the distribution. This study addresses the problem where a dominant airline dynamically sets prices to sell its capacities within a two-phase sales period with only partial information. That partial information may show as the moments (upper and lower bounds and mean) and the median of the demand distribution. We model the problem of dynamic pricing as a distributional robust stochastic programming, which minimizes the expected regret value under the worst-case distribution in the presence of partial information. We further reformulate the proposed non-convex model to show that the closed-form formulae of the second-stage maximal expected regret are well-structured. We also design an efficient algorithm to characterize robust pricing strategies in a polynomial-sized running time. Using numerical analysis, we present several useful managerial insights for airline managers to strategically collect demand information and make prices for their capacities in different market situations. Moreover, we verify that additional information will not compromise the viability of the pricing strategies being implemented. Therefore, the method we present in this paper is easier for airlines to use.

12.
Environ Int ; 160: 107057, 2022 02.
Article in English | MEDLINE | ID: mdl-34953284

ABSTRACT

Manipulation of freshwater food web through species introduction has been used to control the increasing algae in the Wuliangsuhai Lake, which affects not only the pathways of carbon source and energy transfer, but also the transfer of contaminants through food web. Food web relationships between biomanipulation area (BMA) and non-biological manipulation area (NBMA) were investigated using stable carbon (δ13C) and nitrogen (δ15N) isotope analysis. In BMA, the δ13C values in fish species were enriched while δ15N depleted due to the increased inter-species competition. Among the same fish species between BMA and NBMA, lower trophic levels were observed in BMA. Concentrations of target PFASs (ΣPFAS) in fish from BMA were significantly (p < 0.05) lower than those from NBMA. Whilst elevated trophic magnification factors (TMFs) of PFASs, especially for perfluoroalkyl carboxylic acids (PFCAs) with long carbon chain length (C9-10), perfluorooctane sulfonate (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) were exhibited in BMA. We found that biomanipulation through species introduction played an important role in control over lake eutrophication and trophic transfer patterns of PFASs in biota from the altered aquatic ecosystem.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fluorocarbons/analysis , Food Chain , Lakes , Water Pollutants, Chemical/analysis
13.
Environ Int ; 157: 106856, 2021 12.
Article in English | MEDLINE | ID: mdl-34520981

ABSTRACT

The quality of irrigation water and drainage water is essential for local ecosystem and human health in agricultural regions. In this study, the transport analysis, source identification, and environmental risk assessment of perfluoroalkyl acids (PFAAs) were conducted in the largest irrigation area in northern China. The concentrations of the total PFAAs (ΣPFAA) ranged from 41.5 to 263 ng/L in surface water, and the short-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluorooctanoic acid (PFOA), were dominant with a total contribution of 94%. Generally, the ΣPFAA levels increased from irrigation waters to drainage and receiving lake waters. PFOA showed the highest increase, with potential emission sources located in the catchment of the sub main drainage ditch D5. More PFOA (36.8 kg/y) was outflowed from Ulansuhai Lake to the Yellow River than that inflowed from the Yellow River to the irrigation district (6.15 kg/y). The results of a risk assessment indicated that avian wildlife living in Ulansuhai Lake were threatened by the PFOA and perfluorobutane sulfonate (PFBS) pollution. The estimated daily intakes (EDIs) of the sum of the PFOA, perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) through aquatic food consumption for people with the different aquatic food preferences accounted for 6-42% (urban) and 4-27% (rural) of the strictest tolerant daily intake (TDI) value. The results of this study highlight the impact of local emissions of PFAS on massive irrigation and drainage systems, and ultimately, the ecosystem and human health.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Caprylates/toxicity , Ecosystem , Environmental Monitoring , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Lakes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Front Plant Sci ; 12: 644896, 2021.
Article in English | MEDLINE | ID: mdl-33897735

ABSTRACT

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) and Leymus mollis Trin. (2n = 4x = 28, NsNsXmXm) are valuable resources for wheat breeding improvement as they share the Ns genome, which contains diverse resistance genes. To explore the behaviors and traits of Ns chromosomes from the two species in wheat background, a series of wheat-P. huashanica and wheat-L. mollis substitution lines were developed. In the present study, line DH109 (F7 progeny of wheat-P. huashanica heptaploid line H8911 × durum wheat Trs-372) and line DM131 (F8 progeny of wheat-L. mollis octoploid line M842 × durum wheat Trs-372) were selected. Cytological observation combined with genomic in situ hybridization experiments showed that DH109 and DM131 each had 20 pairs of wheat chromosomes plus a pair of alien chromosomes (Ns chromosome), and the pair of alien chromosomes showed stable inheritance. Multiple molecular markers and wheat 55K SNP array demonstrated that a pair of wheat 3D chromosome in DH109 and in DM131 was substituted by a pair of P. huashanica 3Ns chromosome and a pair of L. mollis 3Ns chromosome, respectively. Fluorescence in situ hybridization (FISH) analysis confirmed that wheat 3D chromosomes were absent from DH109 and DM131, and chromosomal FISH karyotypes of wheat 3D, P. huashanica 3Ns, and L. mollis 3Ns were different. Moreover, the two lines had many differences in agronomic traits. Comparing with their wheat parents, DH109 expressed superior resistance to powdery mildew and fusarium head blight, whereas DM131 had powdery mildew resistance, longer spike, and more tiller number. Therefore, Ns genome from P. huashanica and L. mollis might have some different effects. The two novel wheat-alien substitution lines provide new ideas and resources for disease resistance and high-yield breeding on further utilization of 3Ns chromosomes of P. huashanica or L. mollis.

15.
Huan Jing Ke Xue ; 42(2): 663-672, 2021 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-33742860

ABSTRACT

Polyfluoroalkyl substances (PFASs) enter the environment through multi-media diffusion and long-distance migration during the long-term manufacture and use of products containing PFASs. This study analyzed 17 PFASs in surface water samples collected from the Wuliangsuhai watershed in the wet and dry seasons, and investigated the temporal and spatial distribution characteristics, potential sources, and ecological risks of PFASs in the study area. PFASs were detected in all surface water samples at concentrations ranging from 4.00 to 263.45 ng·L-1. The spatial distribution of PFASs was affected by local human activities and showed two main types of characteristics. The first type was associated with Yellow River and canal water, which had relatively low concentrations of PFASs and was dominated by perfluorobutanoic acid (PFBA). The second type was associated with drain and lake water receiving industrial, agricultural, and domestic wastewater from the Hetao irrigation area, which had relatively high levels of PFASs and was dominated by perfluorooctanoic acid (PFOA). The PFAS concentrations in water samples collected during the dry season were higher than those collected in the wet season, being affected by the increased production of short-chain PFASs and seasonal changes in the amount of water from the Yellow River. The results of PFOS/PFOA, PFOA/PFNA, and PFHpA/PFOA indicated that the PFASs in the study area originate from atmospheric deposition and point source pollution. The risk assessment results showed that the current risk level from PFOA and PFOS in the study area is relatively low but their long-term cumulative effects cannot be ignored due to the cumulative characteristics and long-distance migration ability of PFASs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Environmental Monitoring , Fluorocarbons/analysis , Humans , Rivers , Water , Water Pollutants, Chemical/analysis
16.
Mol Breed ; 41(10): 60, 2021 Oct.
Article in English | MEDLINE | ID: mdl-37309315

ABSTRACT

Synthetic hexaploid wheat offers breeders ready access to potentially novel genetic variation in wild ancestral species. In this study, we crossed MY3478 (2n = 4x = 28, AABB) as the maternal parent with the stripe rust-resistant SY41 (2n = 2x = 14, DD) as the paternal parent to construct the new hexaploid wheat line NA0928 through natural allopolyploidization. Agronomic traits and the cytology of the S8-S9 generations of NA0928 were analyzed. Abundant variation in agronomic traits was observed among each strain of NA0928 in the S8 generation. Agronomic traits were superior in strains resistant to stripe rust compared with those of highly susceptible strains. The rank order of the coefficients of variation were tiller number (55.3%) > spike length (15.3%) > number of spikelets (13.9%) > plant height (8.7). Number of tillers and spike length are important traits in wheat breeding to improve yield. Cytological observation and fluorescence in situ hybridization showed that the chromosome number and configuration showed rich variation among NA0928 strains in the S9 generation. Chromosome number ranged from 36 to 44. Variation in chromosome karyotype was detected in the A and B subgenomes. Meiotic chromosome behavior in pollen mother cells and multicolor genomic in situ hybridization revealed that two new synthetic hexaploid wheat strains showed genetic stability; one strain was resistant to stripe rust and developed multiple tillers, and the other strain was susceptible to stripe rust, but both showed improved thousand-kernel weight (TKW) weight and produced multiple tillers. The two strains will be valuable germplasm resources for use in wheat breeding.

17.
Article in English | MEDLINE | ID: mdl-32674384

ABSTRACT

Water quality is a key indicator of human health. Wuliangsuhai Lake plays an important role in maintaining the ecological balance of the region, protecting the local species diversity and maintaining agricultural development. However, it is also facing a greater risk of water quality deterioration. The 24 water quality factors that this study focused on were analyzed in water samples collected during the irrigation period and non-irrigation period from 19 different sites in Wuliangsuhai Lake, Inner Mongolia, China. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were conducted to evaluate complex water quality data and to explore the sources of pollution. The results showed that, during the irrigation period, sites in the middle part of the lake (clusters 1 and 3) had higher pollution levels due to receiving most of the agricultural and some industrial wastewater from the Hetao irrigation area. During the non-irrigation period, the distribution of the comprehensive pollution index was the opposite of that seen during the irrigation period, and the degree of pollutant index was reduced significantly. Thus, run-off from the Hetao irrigation area is likely to be the main source of pollution.


Subject(s)
Water Pollutants, Chemical , Water Pollution , Water Quality , Agriculture , China , Environmental Monitoring , Lakes , Water Pollutants, Chemical/analysis
18.
BMC Plant Biol ; 20(1): 163, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293283

ABSTRACT

BACKGROUND: Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) carries many outstanding agronomic traits, therefore is a valuable resource for wheat genetic improvement. Wheat-P. huashanica translocation lines are important intermediate materials for wheat breeding and studying the functions of alien chromosomes. However, powdery mildew resistance in these translocation lines has not been reported previously. RESULTS: This study developed a novel wheat-P. huashanica translocation line TR77 by selecting a F7 progeny from the cross between heptaploid hybrid H8911 (2n = 7x = 49, AABBDDNs) and durum wheat line Trs-372. Chromosome karyotype of 2n = 42 = 21II was observed in both mitotic and meiotic stages of TR77. Genomic in situ hybridization analysis identified two translocated chromosomes that paired normally at meiosis stage in TR77. Molecular marker analysis showed that part of chromosome 5D was replaced by part of alien chromosome fragment 5Ns. It meant replacement made part 5DL and part 5NsL·5NsS existed in wheat background, and then translocation happened between these chromosomes and wheat 3D chromosome. Fluorescence in situ hybridization demonstrated that TR77 carries dual translocations: T3DS-5NsL·5NsS and T5DL-3DS·3DL. Analysis using a 15 K-wheat-SNP chip confirmed that SNP genotypes on the 5D chromosome of TR77 matched well with these of P. huashanica, but poorly with common wheat line 7182. The translocation was physically located between 202.3 and 213.1 Mb in 5D. TR77 showed longer spikes, more kernels per spike, and much better powdery mildew resistance than its wheat parents: common wheat line 7182 and durum wheat line Trs-372. CONCLUSIONS: TR77 is a novel stable wheat-P. huashanica T3DS-5NsL·5NsS and T5DL-3DS·3DL dual translocation line and showed significant improved spike traits and resistance to powdery mildew compared to its parents, thus, it can be an useful germplasm for breeding disease resistance and studying the genetic mechanism of dual translocations.


Subject(s)
Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Breeding , Disease Resistance/genetics , Expressed Sequence Tags , Hybridization, Genetic , In Situ Hybridization, Fluorescence , Karyotype , Microsatellite Repeats , Phenotype , Poaceae/genetics , Poaceae/microbiology , Translocation, Genetic
19.
Front Plant Sci ; 11: 233, 2020.
Article in English | MEDLINE | ID: mdl-32210998

ABSTRACT

Take-all is a devastating soil-borne disease that affects wheat production. The continuous generation of disease-resistance germplasm is an important aspect of the management of this pathogen. In this study, we characterized the wheat-Psathyrostachys huashania Keng (P. huashania)-derived progeny H139 that exhibits significantly improved resistance to wheat take-all disease compared with its susceptible parent 7182. Sequential genomic in situ hybridization (GISH) and multicolor fluorescence in situ hybridization (mc-FISH) analyses revealed that H139 is a stable wheat-P. huashania disomic substitution line lacking wheat chromosome 2D. Expressed sequence tag-sequence tagged site (EST-STS) marker and Wheat Axiom 660K Genotyping Array analysis further revealed that H139 was a novel wheat-P. huashania 2Ns/2D substitution line. In addition, the H139 line was shown to be cytologically stable with a dwarf phenotype and increased spikelet number. These results indicate that H139, with its enhanced wheat take-all disease resistance and desirable agronomic traits, provides valuable genetic resources for wheat chromosome engineering breeding.

20.
Environ Sci Pollut Res Int ; 27(12): 13895-13901, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32036536

ABSTRACT

Solid-state fermentation (SSF) of ammoniated corn straw was used to produce feed protein, followed by a toxicological assessment of the fermentation product. Results showed that through ammonification at 35 °C for 9 days and the subsequent SSF by the two fungi Penicillium sp. and Torula allii at 30 °C for 5 days, the contents of real protein and crude protein of the corn straw reached 29.66% and 35.41%, respectively. Toxicological assessment in mice showed that there were no significant differences (P > 0.05) for micronucleated polychromatic erythrocytes (Mn-PCEs) and sperm abnormality between dose groups and the control group. Malondialdehyde (MDA) levels and activities of superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) also showed no significant difference (P > 0.05) between tissues (heart, liver, spleen, stomach, kidney, and brain), which indicates that the fermentation product did not induce toxic effects and is safe to use as ruminant feed.


Subject(s)
Superoxide Dismutase , Zea mays , Animals , Antioxidants , Catalase , Fermentation , Glutathione , Glutathione Peroxidase , Malondialdehyde , Mice , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...