Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5550, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365715

ABSTRACT

Identifying influential spreaders is an important task in controlling the spread of information and epidemic diseases in complex networks. Many recent studies have indicated that the identification of influential spreaders is dependent on the spreading dynamics. Finding a general optimal order of node importance ranking is difficult because of the complexity of network structures and the physical background of dynamics. In this paper, we use four metrics, namely, betweenness, degree, H-index, and coreness, to measure the central attributes of nodes for constructing the disease spreading models and target immunization strategies. Numerical simulations show that spreading processes based on betweenness centrality lead to the widest range of propagation and the smallest epidemic threshold for all six networks (including four real networks and two BA scale-free networks generated according to Barabasi-Albert algorithm). The target immunization strategy based on the betweenness centrality of nodes is the most effective for BA scale-free networks but displays poor immune effect for real networks in identifying the most important spreaders for disease control. The immunization strategy based on node degrees is the most effective for the four real networks. Findings show that the target immune strategy based on the betweenness centrality of nodes works best for standard scale-free networks, whereas that based on node degrees works best for other nonstandard scale-free networks. The results can provide insights into understanding the different metrics of measuring node importance in disease transmission and control.


Subject(s)
Algorithms , Epidemics , Epidemics/prevention & control , Immunization
2.
Chaos ; 31(10): 103124, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34717320

ABSTRACT

This study investigates the synchronizability of a typical type of two-layer correlation networks formed by two regular networks interconnected with two interlayer linking patterns, namely, positive correlation (PC) and negative correlation (NC). To analyze the network's stability, we consider the analytical expressions of the smallest non-zero and largest eigenvalues of the (weighted) Laplacian matrix as well as the linking strength and the network size for two linking patterns. According to the master stability function, the linking patterns, the linking strength, and the network size associated with two typical synchronized regions exhibit a profound influence on the synchronizability of the two-layer networks. The NC linking pattern displays better synchronizability than the PC linking pattern with the same set of parameters. Furthermore, for the two classical synchronized regions, the networks have optimal intralayer and interlayer linking strengths that maximize the synchronizability while minimizing the required cost. Finally, numerical results verify the validity of the theoretical analyses. The findings based on the representative two-layer correlation networks provide the basis for maximizing the synchronizability of general multiplex correlation networks.

3.
BMC Infect Dis ; 15: 495, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26530702

ABSTRACT

BACKGROUND: Hand, foot, and mouth disease (HFMD) is an infectious disease caused by a group of enteroviruses, including Coxsackievirus A16 (CVA16) and Enterovirus A71 (EV-A71). In recent decades, Asian countries have experienced frequent and widespread HFMD outbreaks, with deaths predominantly among children. In several Asian countries, epidemics usually peak in the late spring/early summer, with a second small peak in late autumn/early winter. We investigated the possible underlying association between the seasonality of HFMD epidemics and meteorological variables, which could improve our ability to predict HFMD epidemics. METHODS: We used a time series analysis composed of a spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. The time series analysis was applied to three kinds of monthly time series data collected in Wuhan, China, where high-quality surveillance data for HFMD have been collected: (i) reported cases of HFMD, (ii) reported cases of EV-A71 and CVA16 detected in HFMD patients, and (iii) meteorological variables. RESULTS: In the power spectral densities for HFMD and EV-A71, the dominant spectral lines were observed at frequency positions corresponding to 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated for the 1-year and 6-month cycles reproduced the bimodal cycles that were clearly observed in the HFMD and EV-A71 data. The peak months on the LSF curves for the HFMD data were consistent with those for the EV-A71 data. The risk of infection was relatively high at 10 °C ≤ t < 15 °C (t, temperature [°C]) and 15 °C ≤ t < 20 °C, and peaked at 20 °C ≤ t < 25 °C. CONCLUSION: In this study, the HFMD infections occurring in Wuhan showed two seasonal peaks, in summer (June) and winter (November or December). The results obtained with a time series analysis suggest that the bimodal seasonal peaks in HFMD epidemics are attributable to EV-A71 epidemics. Our results suggest that controlling the spread of EV-A71 infections when the temperature is approximately 20-25 °C should be considered to prevent HFMD infections in Wuhan, China.


Subject(s)
Hand, Foot and Mouth Disease/epidemiology , Child , Child, Preschool , China/epidemiology , Communicable Diseases/epidemiology , Disease Outbreaks , Enterovirus/pathogenicity , Enterovirus Infections/epidemiology , Humans , Infant , Infant, Newborn , Least-Squares Analysis , Models, Theoretical , Seasons , Temperature , Weather
4.
Chaos ; 20(2): 023119, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20590315

ABSTRACT

Recently, some researchers investigated the topology identification for complex networks via LaSalle's invariance principle. The principle cannot be directly applied to time-varying systems since the positive limit sets are generally not invariant. In this paper, we study the topology identification problem for a class of weighted complex networks with time-varying node systems. Adaptive identification laws are proposed to estimate the coupling parameters of the networks with and without communication delays. We prove that the asymptotic identification is ensured by a persistently exciting condition. Numerical simulations are given to demonstrate the effectiveness of the proposed approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...