Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Brain Res ; 1828: 148759, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38242523

ABSTRACT

OBJECTIVE: Inflammation-related factors play a crucial role in intracranial aneurysms (IA) initiation, progression, and rupture. High mobility group box 1 (HMGB-1) serves as an alarm to drive the pathogenesis of the inflammatory disease. This study aimed to evaluate the role of HMGB-1 in IA and explore the correlation with other inflammatory-related factors. METHODS: A total of twenty-eight adult male Japanese white rabbits were included in with elastase-induced aneurysms, n = 18) and the control group (normal rabbits, n = 10). To assess the expression of HMGB-1, both reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) was performed on serum samples obtained from human subjects (10 patients with IA and 10 healthy donors) as well as from rabbits (aneurysm group and control group). Immunohistochemistry and immunofluorescence were employed to evaluate the expression levels of elastic fibers, HMGB-1, tumor necrosis factor-alpha (TNF-α), and triggering receptor expressed on myeloid cells-1 (TREM-1). RESULTS: The expression of HMGB-1 was found to be significantly higher in the IA group compared to the control group, both at the mRNA and protein levels (P < 0.0001). Similar findings were observed in the rabbit aneurysm model group compared to the control group (P < 0.0001). HMGB-1 expression was observed to be more abundant in the inner wall of the aneurysm compared to the external wall, whereas in the control group, it was rarely scattered. Additionally, the localization patterns of TNF-α and TREM-1 exhibited similar characteristics to HMGB-1. CONCLUSION: Our findings demonstrate that HMGB-1 is highly expressed in both IA patients and rabbit aneurysm models. Furthermore, the similar localization patterns of HMGB-1, TNF-α, and TREM-1 suggest their potential involvement in the inflammatory processes associated with IA. These results highlight the potential of HMGB-1 as a novel therapeutic target for IA.


Subject(s)
HMGB1 Protein , Intracranial Aneurysm , Adult , Animals , Humans , Male , Rabbits , Tumor Necrosis Factor-alpha/metabolism , Triggering Receptor Expressed on Myeloid Cells-1 , Intracranial Aneurysm/etiology , Intracranial Aneurysm/pathology , Inflammation/pathology , HMGB Proteins , HMGB1 Protein/metabolism
2.
World Neurosurg ; 180: e364-e375, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769840

ABSTRACT

OBJECTIVE: Burr hole drainage (BHD) is the primary surgical intervention for managing chronic subdural hematoma (CSDH). However, it can lead to postoperative complications such as acute bleeding within the hematoma cavity and hematoma recurrence. The objective of this study is to identify the risk factors for these complications and develop a predictive model for acute hematoma cavity bleeding after BHD in patients with CSDH. METHODS: This study presents a retrospective cohort investigation conducted at a single center. The clinical dataset of 308 CSDH patients who underwent BHD at a hospital from 2016 to 2022 was analyzed to develop and assess a prognostic model. RESULTS: The nonbleeding group exhibited a significant correlation between fibrinogen (FIB) and thrombin time (TT), whereas no correlation was observed in the bleeding group. Notably, both FIB and TT were identified as risk factors for postoperative acute bleeding within the hematoma cavity. We developed a prognostic model to predict the occurrence of postoperative acute bleeding within the hematoma cavity after BHD in patients with CSDH. The model incorporated FIB, TT, coronary artery disease, and Glasgow Coma Scale scores. The model exhibited good discrimination (area under the curve: 0.725) and calibration (Hosmer-Leeshawn goodness of fit test: P > 0.1). Furthermore, decision curve analysis demonstrated the potential clinical benefit of implementing this prediction model. CONCLUSIONS: The predictive model developed in this study can forecast the risk of postoperative acute bleeding within the hematoma cavity, thus aiding clinicians in selecting the optimal treatment approach for patients with CSDH.


Subject(s)
Hematoma, Subdural, Chronic , Humans , Retrospective Studies , Hematoma, Subdural, Chronic/surgery , Trephining/adverse effects , Drainage/adverse effects , Postoperative Hemorrhage/epidemiology , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/surgery , Fibrinogen , Recurrence
3.
J Korean Neurosurg Soc ; 66(5): 598-604, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37337741

ABSTRACT

Penetrating head injury is a serious open cranial injury. In civilians, it is often caused by non-missile, low velocity flying objects that penetrate the skull through a weak cranial structure, forming intracranial foreign bodies. The intracranial foreign body can be displaced due to its special quality, shape, and location. In this paper, we report a rare case of right-to-left displacement of an airgun lead bullet after transorbital entry into the skull complicated by posttraumatic epilepsy, as a reminder to colleagues that intracranial metal foreign bodies maybe displaced intraoperatively. In addition, we have found that the presence of intracranial metallic foreign bodies may be a factor for the posttraumatic epilepsy, and their timely removal appears to be beneficial for epilepsy control.

4.
Cell Death Dis ; 14(1): 23, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36635261

ABSTRACT

Glioma is the most aggressive and common malignant neoplasms in human brain tumors. Numerous studies have showed that glioma stem cells (GSCs)drive the malignant progression of gliomas. Recent studies have revealed that circRNAs can maintain stemness and promote malignant progression of glioma stem cells. We used bioinformatics analysis to identify circRNAs and potential RNA-binding proteins (RBPs) in glioma. qRT-PCR, western blotting, RNA FISH, RNA pull-down, RNA immunoprecipitation assay, ChIP, immunohistochemistry, and immunofluorescence methods were used to quantified the expression of circNCAPG, U2AF65, RREB1 and TGF-ß1, and the underlying mechanisms between them. MTS, EDU, neurosphere formation, limiting dilution neurosphere formation and transwell assays examined the proliferation and invasive capability of GSCs, respectively. We identified a novel circRNA named circNCAPG was overexpressed and indicated the poor prognosis in glioma patients. Upregulating circNCAPG promoted the malignant progression of GSCs. RNA binding protein U2AF65 could stabilize circNCAPG by direct binding. Mechanically, circNCAPG interacted with and stabilized RREB1, as well as stimulated RREB1 nuclear translocation to activate TGF-ß1 signaling pathway. Furthermore, RREB1 transcriptionally upregulated U2AF65 expression to improve the stability of circNCAPG in GSCs, which established a feedback loop involving U2AF65, circNCAPG and RREB1. Since circRNA is more stable than mRNA and can execute its function continuously, targeting circNCAPG in glioma may be a novel promising therapeutic.


Subject(s)
Brain Neoplasms , Glioma , MicroRNAs , RNA, Circular , Humans , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/metabolism , Feedback , Gene Expression Regulation, Neoplastic , Glioma/pathology , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , RNA, Circular/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism
6.
J Exp Clin Cancer Res ; 41(1): 307, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266731

ABSTRACT

BACKGROUND: Ferroptosis is a novel form of iron-dependent cell death and participates in the malignant progression of glioblastoma (GBM). Although circular RNAs (circRNAs) are found to play key roles in ferroptosis via several mechanisms, including regulating iron metabolism, glutathione metabolism, lipid peroxidation and mitochondrial-related proteins, there are many novel circRNAs regulating ferroptosis need to be found, and they may become a new molecular treatment target in GBM. METHODS: The expression levels of circLRFN5, PRRX2 and GCH1 were detected by qPCR, western blotting, and immunohistochemistry. Lentiviral-based infections were used to overexpress or knockdown these molecules in glioma stem cells (GSCs). The biological functions of these molecules on GSCs were detected by MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium), the 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, transwell, neurosphere formation assays, Extreme Limiting Dilution Analysis (ELDA) and xenograft experiments. The content of ferroptosis levels in GSCs was detected by BODIPY 581/591 C11 assay, glutathione (GSH) assay and malondialdehyde (MDA) assay. The regulating mechanisms among these molecules were studied by RNA immunoprecipitation assay, RNA pull-down assay, ubiquitination assay, dual-luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: We found a novel circRNA circLRFN5 is downregulated in GBM and associated with GBM patients' poor prognosis. CircLRFN5 overexpression inhibits the cell viabilities, proliferation, neurospheres formation, stemness and tumorigenesis of GSCs via inducing ferroptosis. Mechanistically, circLRFN5 binds to PRRX2 protein and promotes its degradation via a ubiquitin-mediated proteasomal pathway. PRRX2 can transcriptionally upregulate GCH1 expression in GSCs, which is a ferroptosis suppressor via generating the antioxidant tetrahydrobiopterin (BH4). CONCLUSIONS: Our study found circLRFN5 as a tumor-suppressive circRNA and identified its role in the progression of ferroptosis and GBM. CircLRFN5 can be used as a potential GBM biomarker and become a target for molecular therapies or ferroptosis-dependent therapy in GBM.


Subject(s)
Brain Neoplasms , Ferroptosis , Glioblastoma , Glioma , RNA, Circular , Humans , Antioxidants , Biomarkers , Brain Neoplasms/pathology , Deoxyuridine , Glioblastoma/pathology , Glioma/pathology , Glutathione , Homeodomain Proteins/metabolism , Iron , Malondialdehyde , RNA, Circular/genetics , Ubiquitins , GTP Cyclohydrolase/metabolism
7.
Cell Death Dis ; 13(8): 697, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945192

ABSTRACT

Glioma stem cells (GSCs) are a special kind of cells in GBM showing tumor initiation, self-renewal, and multi-lineage differentiation abilities. Finding novel circRNAs related to GSCs is of great significance for the study of glioma. qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of circKPNB1, SPI1, DGCR8, and TNF-α. The expression of these molecules in GSCs was regulated by lentiviral-based infection. RNA immunoprecipitation assay, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to study the direct regulation mechanisms among these molecules. All the MTS, EDU, transwell, neurosphere formation assays, ELDA assays, and xenograft experiments were used to detect the malignant phenotype of GSCs. We found a novel circRNA circKPNB1 was overexpressed in GBM and associated with GBM patients' poor prognosis. CircKPNB1 overexpression can promote the cell viabilities, proliferation, invasion, neurospheres formation abilities, and stemness of GSCs. Mechanistically, circKPNB1 regulates the protein stability and nuclear translocation of SPI1. SPI1 promotes the malignant phenotype of GSCs via TNF-α mediated NF-κB signaling. SPI1 can also transcriptionally upregulate DGCR8 expression, and the latter can maintain the stability of circKPNB1 and forms a positive feedback loop among DGCR8, circKPNB1 and SPI1. Our study found circKPNB1 was a novel oncogene in GBM and of great significance in the diagnosis and prognosis prediction of GBM and maybe a novel target for molecular targeted therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , MicroRNAs , Signal Transduction , beta Karyopherins/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Feedback , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioma/pathology , Humans , MicroRNAs/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplastic Stem Cells/metabolism , RNA-Binding Proteins/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
Cell Death Dis ; 13(7): 645, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871061

ABSTRACT

Glioblastoma multiforme (GBM) is the most lethal type of craniocerebral gliomas. Glioma stem cells (GSCs) are fundamental reasons for the malignancy and recurrence of GBM. Revealing the critical mechanism within GSCs' self-renewal ability is essential. Our study found a novel circular RNA (circRPPH1) that was up-regulated in GSCs and correlated with poor survival. The effect of circRPPH1 on the malignant phenotype and self-renewal of GSCs was detected in vitro and in vivo. Mechanistically, UPF1 can bind to circRPPH1 and maintain its stability. Therefore, more existing circRPPH1 can interact with transcription factor ATF3 to further transcribe UPF1 and Nestin expression. It formed a feedback loop to keep a stable stream for stemness biomarker Nestin to strengthen tumorigenesis of GSCs continually. Besides, ATF3 can activate the TGF-ß signaling to drive GSCs for tumorigenesis. Knocking down the expression of circRPPH1 significantly inhibited the proliferation and clonogenicity of GSCs both in vitro and in vivo. The overexpression of circRPPH1 enhanced the self-renewal of GSCs. Our findings suggest that UPF1/circRPPH1/ATF3 maintains the potential self-renewal of GSCs through interacting with RNA-binding protein and activating the TGF-ß signal pathway. Breaking the feedback loop against self-renewing GSCs may represent a novel therapeutic target in GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Activating Transcription Factor 3 , Brain Neoplasms/pathology , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/metabolism , Feedback , Glioblastoma/pathology , Glioma/genetics , Humans , Neoplastic Stem Cells/metabolism , Nestin/metabolism , Phenotype , RNA Helicases/genetics , RNA Helicases/metabolism , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism
9.
Oncogene ; 41(26): 3461-3473, 2022 06.
Article in English | MEDLINE | ID: mdl-35637250

ABSTRACT

Glioblastoma multiforme (GBM) is the most lethal primary tumor with active neovascularization in the central nervous system. Studying the novel molecular mechanisms of GBM angiogenesis is very important. The glioblastoma-associated microglia (GAM) M2 polarization was constructed, and microglia-derived exosomes (MDEs) were isolated to co-culture with human brain microvessel endothelial cells (hBMECs). CircRNA sequence and molecular biological experiments were used to detect the expression levels and regulation functions among circKIF18A, FOXC2, ITGB3, CXCR4, DLL4 and the PI3K/AKT signaling. The functional effects of silencing or overexpression of these molecules were evaluated in hBMECs viability, invasion, and tube formation in vitro and tumorigenicity in vivo. M2 microglia polarization is positively correlated with microvessels' density in GBM patients. M2 GAM can promote the angiogenesis of GBM via transporting exosomal circKIF18A into hBMECs. Mechanistically, circKIF18A can bind to, maintain the stability and nuclear translocation of FOXC2 in hBMECs. Furtherly, as a transcription factor, FOXC2 can directly bind to the promoter of ITGB3, CXCR4, and DLL4 and upregulate their expressions. Besides, FOXC2 can also activate the PI3K/AKT signaling and promote the angiogenesis of GBM. Our study identified a novel molecular mechanism for M2 GAM-derived exosomal circKIF18A participating in GBM angiogenesis via targeting FOXC2. This may provide a novel treatment target to improve the outcomes for anti-angiogenic therapies in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , Cell Line, Tumor , Endothelial Cells/metabolism , Forkhead Transcription Factors/metabolism , Glioblastoma/pathology , Humans , Microglia/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
10.
Front Oncol ; 11: 699933, 2021.
Article in English | MEDLINE | ID: mdl-34408982

ABSTRACT

Glioblastoma (GBM) is a common and refractory subtype of high-grade glioma with a poor prognosis. The epithelial-mesenchymal transition (EMT) is an important cause of enhanced glioblastoma invasiveness and tumor recurrence. Our previous study found that retinoic acid receptor-related orphan receptor A (RORA) is a nuclear receptor and plays an important role in inhibiting proliferation and tumorigenesis of glioma. We further confirmed RORA was downregulated in GBM. Thus, we determined whether RORA was involved in the migration, invasion, and EMT of GBM. Human GBM cell lines, U87 and T98G, and patient-derived glioma stem cells (GSCs), GSC2C and GSC4D, were used for in vitro and in vivo experiments. The expressions of RORA, CASC2, and EIF4A3 in GBM cells and GSCs were detected by RT-qPCR and western blotting. The biological effects of RORA, CASC2, and EIF4A3 on GBM migration, invasion, and EMT were evaluated using the migration assay, transwell assay, immunofluorescence staining, and xenograft experiments. We found that RORA inhibited the migration, invasion, and EMT of GBM. CASC2 could bind to, maintain the stability, and promote the nuclear translocation of RORA protein. EIF4A3 could downregulate CASC2 expression via inducing its cleavage, while RORA transcriptionally inhibited EIF4A3 expression, which formed a feedback loop among EIF4A3/CASC2/RORA. Moreover, gene set enrichment analysis (GSEA) and in vitro and in vivo experiments showed RORA inhibited the aggressiveness of GBM by negatively regulating the TGF-ß1/Smad signaling pathway. Therefore, The EIF4A3/CASC2/RORA feedback loop regulated TGF-ß1/Smad signaling pathway might become a promising therapeutic strategy for GBM treatment.

11.
J Cancer ; 12(15): 4530-4541, 2021.
Article in English | MEDLINE | ID: mdl-34149917

ABSTRACT

Purpose: Several studies have indicated that SLC39A7 plays an important role in tumor progression; however, little is known about the function and mechanism of SLC39A7 in glioma. In this study, we aimed to explore the role of SLC39A7 in glioma development. Patients and methods: Bioinformatic analysis was used to predict the role of SLC39A7 in glioma. Cell viability and Edu assays were used to detect the proliferation of glioma cells. A transwell assay was used to measure the invasion and migration of glioma cells. Western blotting, qPCR and ELISA were used to detect the expression of all molecules. Results: SLC39A7 was found to be highly expressed in high-grade glioma patients with a poor prognosis. Our results indicated that SLC39A7 significantly promoted the proliferation, invasion and migration of glioma cells. Furthermore, SLC39A7 promoted tumorigenesis in orthotopic models. We determined that SLC39A7 promotes the malignant behaviors of glioma by activating the TNF-α-mediated NF-κB signaling pathway. Conclusion: Our study revealed that SLC39A7 promotes the proliferation, invasion and migration of glioma cells via the TNF-α-mediated NF-κB signaling pathway, which provides potential targets for glioma therapy.

12.
J Exp Clin Cancer Res ; 40(1): 134, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33858489

ABSTRACT

BACKGROUND: Glioma is the most common and malignant tumor of central nervous system. The tumor initiation, self-renewal, and multi-lineage differentiation abilities of glioma stem cells (GSCs) are responsible for glioma proliferation and recurrence. Although circular RNAs (circRNAs) play vital roles in the progression of glioma, the detailed mechanisms remain unknown. METHODS: qRT-PCR, western blotting, immunohistochemistry, and bioinformatic analysis were performed to detect the expression of circATP5B, miR-185-5p, HOXB5, and SRSF1. Patient-derived GSCs were established, and MTS, EDU, neurosphere formation, and limiting dilution assays were used to detect the proliferation of GSCs. RNA-binding protein immunoprecipitation, RNA pull-down, luciferase reporter assays, and chromatin immunoprecipitation assays were used to detect these molecules' regulation mechanisms. RESULTS: We found circATP5B expression was significantly upregulated in GSCs and promoted the proliferation of GSCs. Mechanistically, circATP5B acted as miR-185-5p sponge to upregulate HOXB5 expression. HOXB5 was overexpressed in glioma and transcriptionally regulated IL6 expression and promoted the proliferation of GSCs via JAK2/STAT3 signaling. Moreover, RNA binding protein SRSF1 could bind to and promote circATP5B expression and regulate the proliferation of GSCs, while HOXB5 also transcriptionally regulated SRSF1 expression. CONCLUSIONS: Our study identified the SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop in GSCs. This provides an effective biomarker for glioma diagnosis and prognostic evaluation.


Subject(s)
Glioma/genetics , Homeodomain Proteins/metabolism , Interleukin-6/metabolism , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , Serine-Arginine Splicing Factors/metabolism , Animals , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Signal Transduction , Transfection
13.
J Exp Clin Cancer Res ; 39(1): 182, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32894165

ABSTRACT

BACKGROUND: Glioma is the most common and lethal primary brain tumor in adults, and angiogenesis is one of the key factors contributing to its proliferation, aggressiveness, and malignant transformation. However, the discovery of novel oncogenes and the study of its molecular regulating mechanism based on circular RNAs (circRNAs) may provide a promising treatment target in glioma. METHODS: Bioinformatics analysis, qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of ISL2, miR-342-3p, circRNA ARF1 (cARF1), U2AF2, and VEGFA. Patient-derived glioma stem cells (GSCs) were established for the molecular experiments. Lentiviral-based infection was used to regulate the expression of these molecules in GSCs. The MTS, EDU, Transwell, and tube formation assays were used to detect the proliferation, invasion, and angiogenesis of human brain microvessel endothelial cells (hBMECs). RNA-binding protein immunoprecipitation, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to detect the direct regulation mechanisms among these molecules. RESULTS: We first identified a novel transcription factor related to neural development. ISL2 was overexpressed in glioma and correlated with poor patient survival. ISL2 transcriptionally regulated VEGFA expression in GSCs and promoted the proliferation, invasion, and angiogenesis of hBMECs via VEGFA-mediated ERK signaling. Regarding its mechanism of action, cARF1 upregulated ISL2 expression in GSCs via miR-342-3p sponging. Furthermore, U2AF2 bound to and promoted the stability and expression of cARF1, while ISL2 induced the expression of U2AF2, which formed a feedback loop in GSCs. We also showed that both U2AF2 and cARF1 had an oncogenic effect, were overexpressed in glioma, and correlated with poor patient survival. CONCLUSIONS: Our study identified a novel feedback loop among U2AF2, cARF1, miR-342-3p, and ISL2 in GSCs. This feedback loop promoted glioma angiogenesis, and could provide an effective biomarker for glioma diagnosis and prognostic evaluation, as well as possibly being used for targeted therapy.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Glioma/pathology , LIM-Homeodomain Proteins/metabolism , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/pathology , Nerve Tissue Proteins/metabolism , RNA, Circular/genetics , Splicing Factor U2AF/metabolism , Transcription Factors/metabolism , ADP-Ribosylation Factor 1/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Feedback, Physiological , Female , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Humans , LIM-Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Nerve Tissue Proteins/genetics , Prognosis , Splicing Factor U2AF/genetics , Survival Rate , Transcription Factors/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Cell Oncol (Dordr) ; 43(3): 461-475, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32207044

ABSTRACT

PURPOSE: The iron-chelating agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) has been found to inhibit cell growth and to induce apoptosis in several human cancers. However, its effects and mechanism of action in glioma are unknown. METHODS: Human glioma cell line LN229 and patient-derived glioma stem cells GSC-42 were applied for both in vitro and in vivo xenograft nude mouse experiments. The anti-tumor effects of Dp44mT were assessed using MTS, EdU, TUNEL, Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation and immunohistochemical assays. RESULTS: We found that Dp44mT can upregulate the expression of the anti-oncogene N-myc downstream-regulated gene (NDRG)2 by directly binding to and activating the RAR-related orphan receptor (ROR)A. In addition, we found that NDRG2 overexpression suppressed inflammation via activation of interleukin (IL)-6/Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 signaling. CONCLUSIONS: Our data indicate that Dp44mT may serve as an effective drug for the treatment of glioma by targeting RORA and enhancing NDRG2-mediated IL-6/JAK2/STAT3 signaling.


Subject(s)
Apoptosis/drug effects , Glioma/pathology , Iron Chelating Agents/pharmacology , Janus Kinase 2/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , STAT3 Transcription Factor/metabolism , Thiosemicarbazones/pharmacology , Tumor Suppressor Proteins/metabolism , Animals , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Interleukin-6/metabolism , Mice, Inbred BALB C , Models, Biological , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/genetics
15.
EBioMedicine ; 52: 102651, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32062354

ABSTRACT

BACKGROUND: Glioma has a poor prognosis, and is the most common primary and lethal primary malignant tumor in the central nervous system. Retinoic acid receptor-related orphan receptor A (RORA) is a member of the ROR subfamily of orphan receptors and plays an anti-tumor role in several cancers. METHODS: A cell viability assay, the Edu assay, neurosphere formation assay, and xenograft experiments were used to detect the proliferative abilities of glioma cell line, glioma stem cells (GSCs). Western blotting, ELISAs, and luciferase reporter assays were used to detect the presence of possible microRNAs. FINDINGS: Our study found for the first time that RORA was expressed at low levels in gliomas, and was associated with a good prognosis. RORA overexpression inhibited the proliferation and tumorigenesis of glioma cell lines and GSCs via inhibiting the TNF-α mediated NF-κB signaling pathway. In addition, microRNA-18a had a promoting effect on gliomas, and was the possible reason for low RORA expression in gliomas. INTERPRETATION: RORA may be a promising therapeutic target in the treatment of gliomas.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Glioma/genetics , Glioma/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Tumor Necrosis Factor-alpha/metabolism , 3' Untranslated Regions , Adult , Aged , Animals , Biomarkers , Biomarkers, Tumor , Cell Cycle/genetics , Cell Line, Tumor , Computational Biology , Disease Models, Animal , Female , Gene Expression Profiling , Glioma/mortality , Glioma/pathology , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Prognosis , RNA Interference , Signal Transduction
16.
EBioMedicine ; 48: 36-48, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31631037

ABSTRACT

BACKGROUND: Glioma is the most common primary malignant tumor in the central nervous system with frequent hypoxia and angiogenesis. Limb-Bud and Heart (LBH) is a highly conserved transcription cofactor that participates in embryonic development and tumorigenesis. METHODS: The conditioned media from LBH regulated human glioma cell lines and patient-derived glioma stem cells (GSCs) were used to treat the human brain microvessel endothelial cells (hBMECs). The function of LBH on angiogenesis were examined through methods of MTS assay, Edu assay, TUNEL assay, western blotting analysis, qPCR analysis, luciferase reporter assay and xenograft experiment. FINDINGS: Our study found for the first time that LBH was overexpressed in gliomas and was associated with a poor prognosis. LBH overexpression participated in the angiogenesis of gliomas via the vascular endothelial growth factor A (VEGFA)-mediated extracellular signal-regulated kinase (ERK) signalling pathway in human brain microvessel endothelial cells (hBMECs). Rapid proliferation of gliomas can lead to tissue hypoxia and hypoxia inducible factor-1 (HIF-1) activation, while HIF-1 can directly transcriptionally regulate the expression of LBH and result in a self-reinforcing cycle. INTERPRETATION: LBH may be a possible treatment target to break the vicious cycle in glioma treatment.  :  .


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Glioma/genetics , Glioma/metabolism , Neovascularization, Pathologic/genetics , Transcription Factors/genetics , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression , Gene Knockdown Techniques , Glioma/pathology , Heterografts , Humans , Hypoxia/genetics , Hypoxia/metabolism , Immunohistochemistry , Mice , Neoplasm Grading , Neoplasm Staging , Neovascularization, Pathologic/metabolism , Signal Transduction , Transcription Factors/metabolism
17.
Cancer Immunol Immunother ; 68(7): 1157-1169, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31197461

ABSTRACT

Chordoma is difficult to eradicate due to high local recurrence rates. The immune microenvironment is closely associated with tumor prognosis; however, its role in skull base chordoma is unknown. The expression of Galectin-9 (Gal9) and tumor-infiltrating lymphocyte (TIL) markers was assessed by immunohistochemistry. Kaplan-Meier and multivariate Cox analyses were used to assessing local recurrence-free survival (LRFS) and overall survival (OS) of patients. MiR-455-5p was identified as a regulator of Gal9 expression. Immunopositivity for Gal9 was associated with tumor invasion (p = 0.019), Karnofsky performance status (KPS) score (p = 0.017), and total TIL count (p < 0.001); downregulation of miR-455-5p was correlated with tumor invasion (p = 0.017) and poor prognosis; and the T-cell immunoglobulin and mucin-domain 3 (TIM3)+ TIL count was associated with chordoma invasion (p = 0.010) and KPS score (p = 0.037). Furthermore, multivariate analysis indicated that only TIM3+ TIL density was an independent prognostic factor for LRFS (p = 0.010) and OS (p = 0.016). These results can be used to predict clinical outcome and provide a basis for immune therapy in skull base chordoma patients.


Subject(s)
Chordoma/pathology , Galectins/genetics , Lymphocytes, Tumor-Infiltrating/immunology , MicroRNAs/metabolism , Skull Base Neoplasms/pathology , Adolescent , Adult , Aged , Child , Chordoma/genetics , Chordoma/immunology , Chordoma/mortality , Disease-Free Survival , Female , Follow-Up Studies , Galectins/immunology , Galectins/metabolism , Gene Expression Regulation, Neoplastic/immunology , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/immunology , Prognosis , Retrospective Studies , Skull Base Neoplasms/immunology , Skull Base Neoplasms/mortality , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...