Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Chem ; 450: 139347, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653047

ABSTRACT

Food freshness monitoring is an important component in ensuring food safety for consumers and the food industry. Therefore, there is an urgent need for a portable, low-cost, and efficient detection method to determine the freshness. In this study, polyvinyl alcohol (PVA) was used as polymer carrier to prepare electrospinning film containing curcumin (Cur) and gardenia blue (GB) as intelligent indicator label on food packaging for real-time nondestructive detection of freshness of shrimp. The detection limit of ammonia response is less than or equal to 20 ppm, and the detection time is about 1 min, indicating that it has a sensitive response effect. At the same time, a smartphone application that can identify amines in response to color changes has been developed, and consumers can understand freshness by scanning the label. This study demonstrates the huge potential of smart indicator labels for food freshness monitoring.


Subject(s)
Food Packaging , Polyvinyl Alcohol , Smartphone , Animals , Polyvinyl Alcohol/chemistry , Food Packaging/instrumentation , Amines/chemistry , Amines/analysis , Penaeidae/chemistry , Shellfish/analysis , Curcumin/chemistry , Curcumin/analysis
2.
Biosens Bioelectron ; 240: 115660, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37683503

ABSTRACT

Endoplasmic reticulum (ER) stress can induce reactive oxygen (ROS) generation which is directly associated with the emergence of atherosclerosis. Foam cells could promote atherogenesis by inducing ER stress. To understand hypochlorite (ClO-) levels in foam cells under ER stress, novel ER-targeted ClO- activatable ratiometric fluorescence probes Rx-NE and Rx-NCE were designed using a classical rhodamine dye and coumarin dye bridge moiety as the fluorescent skeleton. Both Rx-NE and Rx-NCE demonstrated ratiometric detection capabilities for ClO-, with Rx-NCE showing better sensitivity compared to Rx-NE. The probe Rx-NCE could detect the upregulation of ClO- in foam cells under ER stress and clearly outline delineation of the boundary of atherosclerotic plaques by dual-color imaging. Importantly, the hypochlorite-activated ratiometric probe Rx-NCE had been innovatively applied to the distinction of atherosclerotic blood vessels in atherosclerosis-bearing transgenic (tg) (flk1: eGFP) zebrafish. The probe Rx-NCE is of significant value for investigating the pathological role of ER stress and atherosclerotic diseases, as well as offering new insights into the identification of atherosclerosis.


Subject(s)
Atherosclerosis , Biosensing Techniques , Animals , Fluorescent Dyes , Hypochlorous Acid , Zebrafish , Atherosclerosis/diagnostic imaging , Endoplasmic Reticulum Stress
3.
Sensors (Basel) ; 23(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37112146

ABSTRACT

This work presents a silicon-based capacitively transduced width extensional mode (WEM) MEMS rectangular plate resonator with quality factor (Q) of over 10,000 at a frequency of greater than 1 GHz. The Q value, determined by various loss mechanisms, was analyzed and quantified via numerical calculation and simulation. The energy loss of high order WEMs is dominated by anchor loss and phonon-phonon interaction dissipation (PPID). High-order resonators possess high effective stiffness, resulting in large motional impedance. To suppress anchor loss and reduce motional impedance, a novel combined tether was designed and comprehensively optimized. The resonators were batch fabricated based on a reliable and simple silicon-on-insulator (SOI)-based fabrication process. The combined tether experimentally contributes to low anchor loss and motional impedance. Especially in the 4th WEM, the resonator with a resonance frequency of 1.1 GHz and a Q of 10,920 was demonstrated, corresponding to the promising f × Q product of 1.2 × 1013. By using combined tether, the motional impedance decreases by 33% and 20% in 3rd and 4th modes, respectively. The WEM resonator proposed in this work has potential application for high-frequency wireless communication systems.

4.
Article in English | MEDLINE | ID: mdl-36834258

ABSTRACT

Tourism eco-security evaluation is an effective tool for facilitating the coordinated and sustainable economic and environmental development of tourist destinations. Based on system theory, this study established a comprehensive evaluation index system for the DPSIR model, applying the entropy-TOPSIS method, spatial autocorrelation, spatial econometric model and geo-detector to investigate the spatial and temporal evolution and drivers of tourism eco-security of the Yellow River basin. The results showed that the tourism eco-security of the Yellow River basin steadily and significantly increased from 2003 to 2020, reaching a peak in 2019, while there was a low level of overall tourism eco-security and improvement possibility. The results show a spatial evolution pattern of expansion from provincial capital cities to nearby prefecture-level cities from the middle and lower reaches to the middle and upper reaches, with significant spatial clustering and spillover effects. Factors affecting the tourism eco-security of the Yellow River basin vary in and between regional basins. Because there are many influencing factors, the key factors were further identified by spatial effect decomposition. The results of this study have important theoretical and practical value in promoting the coordinated and sustainable development of the tourism economy and ecological environment in the Yellow River basin.


Subject(s)
Automobile Driving , Rivers , Tourism , Cities , Entropy , China , Economic Development
5.
Micromachines (Basel) ; 12(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34832738

ABSTRACT

This paper presents a simple and reliable routine for batch fabrication of wear-resistant and conductive probe with a PtSi tip. The fabrication process is based on inductively coupled plasma (ICP) etching, metal evaporation, and annealing. Si tips with curvature radii less than 10 nm were produced with good wafer-level uniformity using isotropic etching and thermal oxygen sharpening. The surface roughness of the etched tip post was reduced by optimized isotropic etching. The dependence of the platinum silicide morphology on annealing conditions were also systematically investigated, and conductive and wear-resistant probes with PtSi tips of curvature radii less than 30 nm were batch fabricated and applied for scanning piezoelectric samples.

6.
Micromachines (Basel) ; 11(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610624

ABSTRACT

This work reports a batch fabrication process for silicon nanometer tip based on isotropic inductively coupled plasma (ICP) etching technology. The silicon tips with nanometer apex and small surface roughness are produced at wafer-level with good etching homogeneity and repeatability. An ICP etching routine is developed to make silicon tips with apex radius less than 5 nm, aspect ratio greater than 5 at a tip height of 200 nm, and tip height more than 10 µm, and high fabrication yield is achieved by mask compensation and precisely controlling lateral etch depth, which is significant for large-scale manufacturing.

7.
Sensors (Basel) ; 19(15)2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31362399

ABSTRACT

A novel microcantilever sensor was batch fabricated for Yersinia detection. The microcantilever surface modification method was optimized by introducing a secondary antibody to increase the number of binding sites. A novel microfluidic platform was designed and fabricated successfully. A 30 µL solution could fully react with the microcantilever surface. Those routines enhanced the binding efficiency between the target and receptor on the microcantilever. With this novel designed microfluidic platform, the specific adsorption of 107 Yersinia on the beam surface with modified F1 antibody was significantly enhanced.


Subject(s)
Antibodies/chemistry , Biosensing Techniques , Yersinia Infections/diagnosis , Yersinia/isolation & purification , Antibodies/immunology , Binding Sites , Humans , Microfluidics/methods , Surface Properties , Yersinia/chemistry , Yersinia/immunology , Yersinia Infections/immunology , Yersinia Infections/microbiology
8.
Ultrason Sonochem ; 29: 60-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26584985

ABSTRACT

Since fecal coliforms was introduced as a standard indicator of pollutants in effluents of municipal wastewater treatment plants in China in 2003, chlorine had been widely used in many wastewater treatment plants. However, concerns about the disinfection by-products (DBPs) of chlorine have been increasing. One of the effective way to reduce the production of DBPs is to reduce the effective chlorine dosage by improving the utilization rate of disinfectant. Ultrasound (US) is proved to be effective in wastewater treatment for its multiple chemical and physical effects produced by cavitation, which could favor the disinfection process accordingly. For the purpose of improving disinfection efficiency with the help of US, following points are addressed in the current study: (1) investigate the enhancement effects of US on the disinfection efficiency of sodium hypochlorite (NaClO) for real secondary effluents of municipal wastewater treatment plants; (2) evaluate the possibility of using US specific energy consumption (kJ/L) as an parameter for disinfection efficiency evaluation; and (3) quantify the reduction in chlorine-DBPs through US application. Results demonstrated that sonication could reduce two-thirds (US pretreatment) or one-third (simultaneous US and NaClO disinfection) of the required concentrations of NaClO (available chlorine) for 4 log reduction of fecal coliforms, which could meet the Class 1A (fecal coliforms less than 1000 CFU/L) discharge standard of China. In addition, US pretreatment with NaClO disinfection performed better enhancement in disinfection efficiency compared with simultaneous US and NaClO disinfection. Furthermore, analysis on DBPs showed that US application as pretreatment could obviously reduce the contents of trichloromethane (TCM) and trichloroacetic acid (TCAA) by more than 85% and 50%, respectively, compared with NaClO disinfection alone for the same disinfection efficiency. Meanwhile, the experimental results also showed that the disinfection efficiency and DBPs concentration were only slightly affected under a constant US specific energy consumption, although input power density and irradiation time changed, indicating that specific energy consumption (kJ/L) could be considered as a better control parameter for disinfection efficiency evaluation.


Subject(s)
Disinfectants/pharmacology , Disinfection/methods , Industrial Waste/analysis , Sodium Hypochlorite/pharmacology , Sonication , Wastewater/chemistry , Wastewater/microbiology
9.
Ultrason Sonochem ; 28: 376-381, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26384921

ABSTRACT

Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2(-)), and chlorate (ClO3(-)), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2(-) concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2(-) and ClO3(-) effectually. In general, US pretreatment could be a better option for disinfection enhancement methods combined with ClO2 in terms of both disinfection efficiency and disinfection by-product formation.


Subject(s)
Chlorine Compounds/pharmacology , Disinfection/methods , Oxides/pharmacology , Sonication , Feces/microbiology , Microbial Viability/drug effects , Water/chemistry
10.
Ultrason Sonochem ; 27: 81-86, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26186823

ABSTRACT

A self-designed continuous-flow ultrasound/ultraviolet (US/UV) baffled reactor was tested in this work, and the disinfection efficiency of secondary effluent from a wastewater treatment plant (WWTP) was investigated in terms of the different locations of ultrasonic transducers inside the reactor under similar input power densities and specific energy consumptions. Results demonstrated that the two-stage simultaneous US/UV irradiation in both chambers 2 and 3 at a flow rate of 1200 L/h performed excellent disinfection efficiency. It achieved an average feacal coliforms concentration of 201±78 colony forming unit (CFU)/L in the effluent and an average of (4.24±0.26) log10 reduction. Thereafter, 8 days of continuous operation was performed under such a condition. A total of 31 samples were taken, and all the samples were analyzed in triplicate for feacal coliforms analysis. Experimental results showed that feacal coliforms concentrations remained at about 347±174 CFU/L under the selected optimum disinfection condition, even if the influent concentrations fluctuated from 3.97×10(5) to 3.57×10(6) CFU/L. This finding implied that all effluents of continuous-flow-baffled-reactor with simultaneous US/UV disinfection could meet the requirements of the discharge standard of pollutants for municipal WWTP (GB 18918-2002) Class 1-A (1000 CFU/L) with a specific energy consumption of 0.219 kWh/m(3). Therefore, the US/UV disinfection process has great potential for practical applications.


Subject(s)
Disinfection/methods , Sonication , Ultraviolet Rays , Wastewater/microbiology , Water Purification/methods , Disinfection/instrumentation , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...