Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Am Chem Soc ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847794

ABSTRACT

Traditional Li-ion intercalation chemistry into graphite anodes exclusively utilizes the cointercalation-free or cointercalation mechanism. The latter mechanism is based on ternary graphite intercalation compounds (t-GICs), where glyme solvents were explored and proved to deliver unsatisfactory cyclability in LIBs. Herein, we report a novel intercalation mechanism, that is, in situ synthesis of t-GIC in the tetrahydrofuran (THF) electrolyte via a spontaneous, controllable reaction between binary-GIC (b-GIC) and free THF molecules during initial graphite lithiation. The spontaneous transformation from b-GIC to t-GIC, which is different from conventional cointercalation chemistry, is characterized and quantified via operando synchrotron X-ray and electrochemical analyses. The resulting t-GIC chemistry obviates the necessity for complete Li-ion desolvation, facilitating rapid kinetics and synchronous charge/discharge of graphite particles, even under high current densities. Consequently, the graphite anode demonstrates unprecedented fast charging (1 min), dendrite-free low-temperature performance, and ultralong lifetimes exceeding 10 000 cycles. Full cells coupled with a layered cathode display remarkable cycling stability upon a 15 min charging and excellent rate capability even at -40 °C. Furthermore, our chemical strategies are shown to extend beyond Li-ion batteries to encompass Na-ion and K-ion batteries, underscoring their broad applicability. Our work contributes to the advancement of graphite intercalation chemistry and presents a low-cost, adaptable approach for achieving fast-charging and low-temperature batteries.

2.
BMC Psychiatry ; 24(1): 136, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365620

ABSTRACT

BACKGROUND: A considerable number of individuals infected with COVID-19 experience residual symptoms after the acute phase. However, the correlation between residual symptoms and psychological distress and underlying mechanisms are scarcely studied. We aim to explore the association between residual symptoms of COVID-19 and psychological distress, specifically depression, anxiety, and fear of COVID-19, and examine the role of risk perception and intolerance of uncertainty in the association. METHODS: A cross-sectional survey was conducted by online questionnaire-based approach in mid-January 2023. Self-reported demographic characteristics, COVID-19-related information, and residual symptoms were collected. Depression, anxiety, fear, risk perception and intolerance of uncertainty were evaluated using the Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), Fear of COVID-19 Scale (FCV-19S), COVID-19 Risk Perception Scale and Intolerance of Uncertainty Scale-12 (IUS-12), respectively. Linear regression analyses were conducted to explore the associations. A moderated mediation model was then constructed to examine the role of risk perception of COVID-19 and intolerance of uncertainty in the association between residual symptoms and psychological distress. RESULTS: 1735 participants effectively completed the survey. 34.9% of the patients experienced residual symptoms after acute phase of COVID-19. Psychological distress was markedly increased by COVID-19 infection, while residual symptoms had a significant impact on psychological distress (Ps < 0.001), including depression (ß = 0.23), anxiety (ß = 0.21), and fear of COVID-19 (ß = 0.14). Risk perception served as a mediator between residual symptoms and all forms of psychological distress, while intolerance of uncertainty moderated the effect of risk perception on depression and anxiety. CONCLUSION: A considerable proportion of patients experience residual symptoms after acute phase of COVID-19, which have a significant impact on psychological distress. Risk perception and intolerance of uncertainty play a moderated-mediation role in the association between residual symptoms and depression/anxiety. It highly suggests that effective treatment for residual symptoms, maintaining appropriate risk perception and improving intolerance of uncertainty are critical strategies to alleviate COVID-19 infection-associated psychological distress.


Subject(s)
COVID-19 , Psychological Distress , Humans , Cross-Sectional Studies , Uncertainty , Depression/psychology , Anxiety/psychology , Perception
3.
Heliyon ; 10(4): e25755, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370209

ABSTRACT

High statistical cognitive ability is an essential factor to achieve high-quality development in the era of artificial intelligence and big data. In this research, we use the machine learning local weighted regression algorithm to analyze the change curve of Chinese statistical cognitive ability throughout the life cycle, as well as the impact of individual education and parental education on statistical cognitive ability of 26,000 individuals from different groups of gender, age, educational background, and family background. All the data analyzed is from the China Family Panel Studies (CFPS). We find that the statistical cognitive ability curve is inverted U-shaped throughout the life cycle, and the years of education, parental education and individual are proportional to statistical cognitive ability. Keywords: statistical cognitive ability, machine learning, robust locally weighted and smoothing scatterplots, education, life cycle.

4.
BMC Psychiatry ; 24(1): 58, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254008

ABSTRACT

BACKGROUND: Depression and anxiety have been found prevalent during all phases of the COVID-19 pandemic. In late December 2022, almost all COVID-19 control measures were lifted in China, leading to a surge in COVID-19 infections. The public's perceived risk and fear of COVID-19 would be increased. This study aims to examine the prevalence of depression and anxiety in the Chinese general population and explores the mediating role of fear of COVID-19 between COVID-19 perceived risk and depression/anxiety and the moderating role of resilience between fear of COVID-19 and depression/anxiety. METHODS: A cross-sectional online survey was conducted in Wenzhou, China, immediately following almost all COVID-19 control measures lifted. The 9-item Patient Health Questionnaire (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), the COVID-19 Risk Perception Scale, the Fear of COVID-19 Scale, and the Connor-Davidson Resilience Scale (CD-RISC) were used to evaluate depression, anxiety, COVID-19 perceived risk, fear of COVID-19, and resilience, respectively. Structural Equation Modeling (SEM) with Maximum Likelihood (ML) estimator and adjusted for significant background factors was performed to test the moderated mediation. Data obtained from 935 participants were analyzed. RESULTS: The prevalence of moderate to severe depression and anxiety was 23.7% and 9.5%, respectively. The present study revealed positive associations among COVID-19 perceived risk, fear of COVID-19 and depression/anxiety, and negative associations between resilience and fear of COVID-19/depression/anxiety. Fear of COVID-19 partially mediated the association between COVID-19 perceived risk and depression/anxiety. Furthermore, resilience significantly moderated the association between fear of COVID-19 and depression/anxiety. Two moderated mediation models were constructed. CONCLUSION: Depression and anxiety were prevalent among Chinese adults during the final phase of the pandemic in China. The significant mediation role of fear of COVID-19 implies that reducing fear of COVID-19 may effectively alleviate depression and anxiety symptoms. Moreover, enhancing public resilience during an epidemic crisis is crucial for promoting mental health.


Subject(s)
COVID-19 , Psychological Tests , Resilience, Psychological , Adult , Humans , Cross-Sectional Studies , Mental Health , Pandemics , COVID-19/epidemiology , Fear
5.
Nat Commun ; 14(1): 8394, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110430

ABSTRACT

To improve lithium-ion battery technology, it is essential to probe and comprehend the microscopic dynamic processes that occur in a real-world composite electrode under operating conditions. The primary and secondary particles are the structural building blocks of battery cathode electrodes. Their dynamic inconsistency has profound but not well-understood impacts. In this research, we combine operando coherent multi-crystal diffraction and optical microscopy to examine the chemical dynamics in local domains of layered oxide cathode. Our results not only pinpoint the asynchronicity of the lithium (de)intercalation at the sub-particle level, but also reveal sophisticated diffusion kinetics and reaction patterns, involving various localized processes, e.g., chemical onset, reaction front propagation, domains equilibration, particle deformation and motion. These observations shed new lights onto the activation and degradation mechanisms of state-of-the-art battery cathode materials.

6.
iScience ; 26(11): 108148, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37915611

ABSTRACT

O-GlcNAc transferase (OGT) acts in the development of various cancers, but its role in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, we found that OGT was upregulated in ccRCC and this upregulation was associated with a worse survival. Moreover, OGT promoted the proliferation, clone formation, and invasion of VHL-mutated ccRCC cells. Mechanistically, OGT increased the protein level of hypoxia-inducible factor-2α (HIF-2α) (the main driver of the clear cell phenotype) by repressing ubiquitin‒proteasome system-mediated degradation. Interestingly, the OGT/HIF-2α axis conferred ccRCC a high sensitivity to ferroptosis. In conclusion, OGT promotes the progression of VHL-mutated ccRCC by inhibiting the degradation of HIF-2α, and agents that can modulate the OGT/HIF-2α axis may exert therapeutic effects on mutated VHL ccRCC.

7.
Comput Struct Biotechnol J ; 21: 4134-4148, 2023.
Article in English | MEDLINE | ID: mdl-37675289

ABSTRACT

Lens epithelium-derived growth factor (LEDGF/p75) is a reader of epigenetic marks and a potential target for therapeutic intervention. Its involvement in human immunodeficiency virus (HIV) integration and the development of leukemia driven by MLL (also known as KMT2A) gene fusion make it an attractive candidate for drug development. However, exploration of LEDGF/p75 as an epigenetic reader of H3K36me3 in tumors is limited. Here, for the first time, we analyze the role of LEDGF/p75 in multiple cancers via multiple online databases and in vitro experiments. We used pancancer bulk sequencing data and online tools to analyze correlations of LEDGF/p75 with prognosis, genomic instability, DNA damage repair, prognostic alternative splicing, protein interactions, and tumor immunity. In summary, the present study identified that LEDGF/p75 may serve as a prognostic predictor for tumors such as adrenocortical carcinoma, kidney chromophobe, liver hepatocellular carcinoma, pancreatic adenocarcinoma, skin cutaneous melanoma, and clear cell renal cell carcinoma (ccRCC). In addition, in vitro experiments and gene microarray sequencing were performed to explore the function of LEDGF/p75 in ccRCC, providing new insights into the pathogenesis of the nonmutated SETD2 ccRCC subtype.

8.
Adv Mater ; 35(41): e2304070, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37463430

ABSTRACT

A new manufacturing paradigm is showcased to exclude conventional mold-dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold-free manufacturing leverages high-resolution 3D-printed multiscale microstructures as the substrate and a gas-phase conformal polymer coating technique to complete the mold-free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D-printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4-ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa-1 ) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure-of-merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost-effective manufacturing manner.

9.
Extreme Mech Lett ; 612023 Jun.
Article in English | MEDLINE | ID: mdl-37304308

ABSTRACT

Subcutaneous (SQ) injection is an effective delivery route for various biologics, including proteins, antibodies, and vaccines. However, pain and discomfort induced during SQ injection pose a notable challenge for the broader and routine use of biologics. Understanding the underlying mechanism and quantification of injection-induced pain and discomfort (IPD) are urgently needed. A crucial knowledge gap is what changes in the skin tissue microenvironment are induced by the SQ injection, which may ultimately cause the IPD. In this study, thus, a hypothesis is postulated that the injection of biologics solution through the skin tissue microenvironment induces spatiotemporal mechanical changes. Specifically, the injection leads to tissue swelling and subsequent increases in the interstitial fluid pressure (IFP) and matrix stress around the injection site, which ultimately causes the IPD. To test this hypothesis, an engineered SQ injection model is developed capable of measuring tissue swelling during SQ injection. The injection model consists of a skin equivalent with quantum dot-labeled fibroblasts, which enables the measurement of injection-induced spatiotemporal deformation. The IFP and matrix stress are further estimated by computational analysis approximating the skin equivalent as a nonlinear poroelastic material. The result confirms significant injection-induced tissue swelling and increases in IFP and matrix stress. The extent of deformation is correlated to the injection rate. The results also suggest that the size of biologics particulates significantly affects the pattern and extent of the deformation. The results are further discussed to propose a quantitative understanding of the injection-induced changes in the skin microenvironment.

10.
Proc Natl Acad Sci U S A ; 119(49): e2212802119, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36454748

ABSTRACT

Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.

11.
Angew Chem Int Ed Engl ; 61(49): e202213840, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36219546

ABSTRACT

Topochemical polymerizations hold the promise of producing high molecular weight and stereoregular single crystalline polymers by first aligning monomers before polymerization. However, monomer modifications often alter the crystal packing and result in non-reactive polymorphs. Here, we report a systematic study on the side chain functionalization of the bis(indandione) derivative system that can be polymerized under visible light. Precisely engineered side chains help organize the monomer crystals in a one-dimensional fashion to maintain the topochemical reactivity. By optimizing the side chain length and end group of monomers, the elastic modulus of the resulting polymer single crystals can also be greatly enhanced. Lastly, using ultrasonication, insoluble polymer single crystals can be processed into free-standing and robust polymer thin films. This work provides new insights on the molecular design of topochemical reactions and paves the way for future applications of this fascinating family of materials.

12.
J Am Chem Soc ; 144(36): 16588-16597, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35994519

ABSTRACT

Closed-loop circular utilization of plastics is of manifold significance, yet energy-intensive and poorly selective scission of the ubiquitous carbon-carbon (C-C) bonds in contemporary commercial polymers pose tremendous challenges to envisioned recycling and upcycling scenarios. Here, we demonstrate a topochemical approach for creating elongated C-C bonds with a bond length of 1.57∼1.63 Å between repeating units in the solid state with decreased bond dissociation energies. Elongated bonds were introduced between the repeating units of 12 distinct polymers from three classes. In all cases, the materials exhibit rapid depolymerization via breakage of the elongated bond within a desirable temperature range (140∼260 °C) while otherwise remaining remarkably stable under harsh conditions. Furthermore, the topochemically prepared polymers are processable and 3D-printable while maintaining a high depolymerization yield and tunable mechanical properties. These results suggest that the crystalline polymers synthesized from simple photochemistry and without expensive catalysts are promising for practical applications with complete materials' circularity.

13.
Nano Lett ; 22(14): 5883-5890, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35797382

ABSTRACT

The composition dynamics regulate the accessible capacity and rate performance of rechargeable batteries. Heterogeneous Li reactions can lead to nonuniform electrochemical activities and amplify mechanical damage in the cell. Here, we employ operando optical microscopy as a laboratory tool to map the spatial composition heterogeneity in a solid-solution cathode for Li-ion batteries. The experiments are conducted at slow charging conditions to investigate the thermodynamic origins. We observe that the active particles charge asynchronously with reaction fronts propagating on the particle surfaces during the first charge, while subsequent (dis)charge cycles transition to a synchronous behavior for the same group of particles. Such transition is understood by computational modeling, which incorporates the dependence of Li diffusivity and interfacial reaction rate on the state of charge. The optical experiments and theoretical modeling provide insight into the reaction heterogeneity of porous electrodes and electrochemical conditioning for layered oxide cathodes.

14.
Chem Rev ; 122(15): 13043-13107, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35839290

ABSTRACT

Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and advances in characterization capabilities, significant research efforts in the last two decades have brought about a leap forward in understanding the intricate chemomechanical interactions regulating battery performance. Going forward, it is necessary to consolidate scattered ideas in the literature into a structured framework for future efforts across multidisciplinary fields. This review sets out to distill and structure what the authors consider to be significant recent developments on the study of chemomechanics of rechargeable batteries in a concise and accessible format to the audiences of different backgrounds in electrochemistry, materials, and mechanics. Importantly, we review the significance of chemomechanics in the context of battery performance, as well as its mechanistic understanding by combining electrochemical, materials, and mechanical perspectives. We discuss the coupling between the elements of electrochemistry and mechanics, key experimental and modeling tools from the small to large scales, and design considerations. Lastly, we provide our perspective on ongoing challenges and opportunities ranging from quantifying mechanical degradation in batteries to manufacturing battery materials and developing cyclic protocols to improve the mechanical resilience.


Subject(s)
Electric Power Supplies , Thermodynamics
15.
Nat Commun ; 13(1): 2854, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606382

ABSTRACT

All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na3PS4-xOx, where 0 < x ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na3PS4-xOx SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs.

16.
Science ; 376(6592): 517-521, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35482882

ABSTRACT

Improving composite battery electrodes requires a delicate control of active materials and electrode formulation. The electrochemically active particles fulfill their role as energy exchange reservoirs through interacting with the surrounding conductive network. We formulate a network evolution model to interpret the regulation and equilibration between electrochemical activity and mechanical damage of these particles. Through statistical analysis of thousands of particles using x-ray phase contrast holotomography in a LiNi0.8Mn0.1Co0.1O2-based cathode, we found that the local network heterogeneity results in asynchronous activities in the early cycles, and subsequently the particle assemblies move toward a synchronous behavior. Our study pinpoints the chemomechanical behavior of individual particles and enables better designs of the conductive network to optimize the utility of all the particles during operation.

17.
Nat Commun ; 13(1): 704, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35121768

ABSTRACT

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

18.
Mater Horiz ; 9(1): 425-432, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34775506

ABSTRACT

In printable electrochromic polymer (ECP) displays, a wide color gamut, precise patterning, and controllable color switching are important. However, it is a significant challenge to achieve such features synergistically. Here, we present a solution-processable ECP stacking scheme, where a crosslinker is co-processed with three primary ECPs (ECP-Cyan, ECP-Magenta, and ECP-Yellow), which endows the primary ECPs with solvent-resistant properties and allows them to be sequentially deposited. Via varying the film thickness of each ECP layer, a full-color palette can be constructed. The ECP stacking strategy is further integrated with photolithography. Delicate multilayer patterns with overhang and undercut textures can be generated, allowing information displays with spatial dimensionality. In addition, via modulating the stacking sequence, the electrochemical onset potentials of the ECP components can be synchronized to reduce unwanted intermediate colors that are often found in co-processed ECPs. Should specific color properties be desired, COMSOL modeling could be applied to guide the stacking. We believe that this ECP stacking strategy opens a new avenue for electrochromic printing and displays.

19.
Nat Commun ; 12(1): 7234, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903754

ABSTRACT

Embedding mechanical logic into soft robotics, microelectromechanical systems (MEMS), and robotic materials can greatly improve their functional capacity. However, such logical functions are usually pre-programmed and can hardly be altered during in-life service, limiting their applications under varying working conditions. Here, we propose a reprogrammable mechanological metamaterial (ReMM). Logical computing is achieved by imposing sequential excitations. The system can be initialized and reprogrammed via selectively imposing and releasing the excitations. Realization of universal combinatorial logic and sequential logic (memory) is demonstrated experimentally and numerically. The fabrication scalability of the system is also discussed. We expect the ReMM can serve as a platform for constructing reusable and multifunctional mechanical systems with strong computation and information processing capability.

20.
Adv Sci (Weinh) ; 8(21): e2102318, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34494394

ABSTRACT

Fast charging (<15 min) of lithium-ion batteries (LIBs) for electrical vehicles (EVs) is widely seen as the key factor that will greatly stimulate the EV markets, and its realization is mainly hindered by the sluggish diffusion of Li+ . To have a mechanistic understanding of Li+ diffusion within LIBs, in this study, structural evolutions of electrodes for a Ni-rich LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) || graphite cylindrical cell with high areal loading (2.78 mAh cm-2 ) are developed for operando neutron powder diffraction study at different charging rates. Via sequential Rietveld refinements, changes in structures of NMC622 and Lix C6 are obtained during moderate and fast charging (from 0.27 C to 4.4 C). NMC622 exhibits the same structural evolution regardless of C-rates. For phase transitions of Lix C6 , the stage I (LiC6 ) phase emerges earlier during the stepwise intercalation at a lower state of charge when charging rate is increased. It is also found that the stage II (LiC12 ) → stage I (LiC6 ) transition is the rate-limiting step during fast charging. The LiC12 → LiC6 transition mechanism is further analyzed using the Johnson-Mehl-Avrami-Kolmogorov model. It is concluded as a diffusion-controlled, 1D phase transition with decreasing nucleation kinetics under increasing chargingrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...