Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Biotechnol ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200119

ABSTRACT

Genome editing with prime editors based on CRISPR-Cas9 is limited by the large size of the system and the requirement for a G/C-rich protospacer-adjacent motif (PAM) sequence. Here, we use the smaller Cas12a protein to develop four circular RNA-mediated prime editor (CPE) systems: nickase-dependent CPE (niCPE), nuclease-dependent CPE (nuCPE), split nickase-dependent CPE (sniCPE) and split nuclease-dependent CPE (snuCPE). CPE systems preferentially recognize T-rich genomic regions and possess a potential multiplexing capacity in comparison to corresponding Cas9-based systems. The efficiencies of the nuclease-based systems are up to 10.42%, whereas niCPE and sniCPE reach editing frequencies of up to 24.89% and 40.75% without positive selection in human cells, respectively. A derivative system, called one-sniCPE, combines all three RNA editing components under a single promoter. By arraying CRISPR RNAs for different targets in one circular RNA, we also demonstrate low-efficiency editing of up to four genes simultaneously with the nickase prime editors niCPE and sniCPE.

3.
Nat Biotechnol ; 42(2): 316-327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37095350

ABSTRACT

A technique for chromosomal insertion of large DNA segments is much needed in plant breeding and synthetic biology to facilitate the introduction of desired agronomic traits and signaling and metabolic pathways. Here we describe PrimeRoot, a genome editing approach to generate targeted precise large DNA insertions in plants. Third-generation PrimeRoot editors employ optimized prime editing guide RNA designs, an enhanced plant prime editor and superior recombinases to enable precise large DNA insertions of up to 11.1 kilobases into plant genomes. We demonstrate the use of PrimeRoot to accurately introduce gene regulatory elements in rice. In this study, we also integrated a gene cassette comprising PigmR, which confers rice blast resistance driven by an Act1 promoter, into a predicted genomic safe harbor site of Kitaake rice and obtain edited plants harboring the expected insertion with an efficiency of 6.3%. We found that these rice plants have increased blast resistance. These results establish PrimeRoot as a promising approach to precisely insert large segments of DNA in plants.


Subject(s)
CRISPR-Cas Systems , Oryza , CRISPR-Cas Systems/genetics , Base Sequence , RNA, Guide, CRISPR-Cas Systems , Plant Breeding , Genome, Plant/genetics , Gene Editing/methods , Plants/genetics , DNA/metabolism , Oryza/genetics , Oryza/metabolism
4.
Nat Biotechnol ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640945

ABSTRACT

Transcription-activator-like effector (TALE)-based tools for base editing of nuclear and organellar DNA rely on double-stranded DNA deaminases, which edit substrate bases on both strands of DNA, reducing editing precision. Here, we present CyDENT base editing, a CRISPR-free, strand-selective, modular base editor. CyDENT comprises a pair of TALEs fused with a FokI nickase, a single-strand-specific cytidine deaminase and an exonuclease to generate a single-stranded DNA substrate for deamination. We demonstrate effective base editing in nuclear, mitochondrial and chloroplast genomes. At certain mitochondrial sites, we show editing efficiencies of 14% and strand specificity of 95%. Furthermore, by exchanging the CyDENT deaminase with one that prefers editing GC motifs, we demonstrate up to 20% mitochondrial base editing at sites that are otherwise inaccessible to editing by other methods. The modular nature of CyDENT enables a suite of bespoke base editors for various applications.

5.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37379837

ABSTRACT

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Subject(s)
Gene Editing , Proteins , Proteins/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA , CRISPR-Cas Systems , Cytosine/metabolism
6.
Nat Biotechnol ; 41(12): 1758-1764, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36894598

ABSTRACT

The ability to control gene expression and generate quantitative phenotypic changes is essential for breeding new and desired traits into crops. Here we report an efficient, facile method for downregulating gene expression to predictable, desired levels by engineering upstream open reading frames (uORFs). We used base editing or prime editing to generate de novo uORFs or to extend existing uORFs by mutating their stop codons. By combining these approaches, we generated a suite of uORFs that incrementally downregulate the translation of primary open reading frames (pORFs) to 2.5-84.9% of the wild-type level. By editing the 5' untranslated region of OsDLT, which encodes a member of the GRAS family and is involved in the brassinosteroid transduction pathway, we obtained, as predicted, a series of rice plants with varied plant heights and tiller numbers. These methods offer an efficient way to obtain genome-edited plants with graded expression of traits.


Subject(s)
Plant Breeding , Protein Biosynthesis , Down-Regulation/genetics , Phenotype , Plants/genetics , Open Reading Frames/genetics
7.
J Med Chem ; 58(15): 5942-9, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26186011

ABSTRACT

Pyrazolone derivatives have previously been found to be inhibitors of Cu/Zn superoxide dismutase 1 (SOD1)-dependent protein aggregation, which extended survival of an amyotrophic lateral sclerosis (ALS) mouse model. On the basis of ADME analysis, we describe herein a new series of tertiary amine-containing pyrazolones and their structure-activity relationships. Further conversion to the conjugate salts greatly improved their solubility. Phosphate compound 17 exhibited numerous benefits both to cellular activity and to CNS-related drug-like properties in vitro and in vivo, including microsomal stability, tolerated toxicity, and blood-brain barrier permeation. These results indicate that tertiary amine pyrazolones comprise a valuable class of ALS drug candidates.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Pyrazolones/pharmacology , Superoxide Dismutase/antagonists & inhibitors , Amines/chemistry , Animals , Female , Humans , In Vitro Techniques , Male , Mice , Pyrazolones/chemistry , Pyrazolones/therapeutic use , Salts , Structure-Activity Relationship
8.
ACS Chem Neurosci ; 5(9): 823-9, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25001311

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1(G93A) cells. PC12-SOD1(G93A) cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1(G93A) cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Proteomics , Pyrazolones/chemistry , Pyrazolones/pharmacology , Adaptor Proteins, Signal Transducing , Animals , Autophagy-Related Proteins , Biotinylation , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Disease Models, Animal , Enzyme Activation/drug effects , Hot Temperature , Humans , Leupeptins/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Models, Molecular , PC12 Cells , Rats , Superoxide Dismutase/genetics , Tandem Mass Spectrometry , Ubiquitins/genetics , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...