Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 262(Pt 1): 130041, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336327

ABSTRACT

Metallo-ß-lactamases (MßLs) stand as significant resistant mechanism against ß-lactam antibiotics in Gram-negative bacteria. The worldwide dissemination of New Delhi metallo-ß-lactamases (NDMs) intensifies antimicrobial resistance, posing severe threats to human health due to the absence of inhibitors available in clinical therapy. L3, a flexible ß-hairpin loop flanking the active site in MßLs, has been proven to wield influence over the reaction process by assuming a crucial role in substrate recognition and intermediate stabilization. In principle, it potentially retards product release from the enzyme, consequently reducing the overall turnover rate although the details regarding this aspect remain inadequately elucidated. In this study, we crystallized NDM-1 in complex with three penicillin substrates, conducted molecular dynamics simulations, and measured the steady-state kinetic parameters. These analyses consistently unveiled substantial disparities in their interactions with loop L3. We further synthesized a penicillin V derivative with increased hydrophobicity in the R1 side chain and co-crystallized it with NDM-1. Remarkably, this compound exhibited much stronger dynamic interplay with L3 during molecular dynamics simulation, showed much lower Km and kcat values, and demonstrated moderate inhibitory capacity to NDM-1 catalyzed meropenem hydrolysis. The data presented here may provide a strategic approach for designing mechanism-based MßL inhibitors focusing on structural elements external to the enzyme's active center.


Subject(s)
Penicillins , beta-Lactams , Humans , Penicillins/pharmacology , Catalytic Domain , Hydrolysis , beta-Lactamases/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Pestic Biochem Physiol ; 194: 105494, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532353

ABSTRACT

The Tobamovirus helicase plays an important role in virus proliferation and host interaction. They can also be targets for antiviral drugs. Tobacco mosaic virus (TMV) is well controlled by ningnanmycin (NNM), but whether it acts on other virus helicases of Tobamovirus virus is not clear. In this study, we expressed and purified several Tobamovirus virus helicase proteins and analyzed the three-dimensional structures of several Tobamovirus virus helicases. In addition, the binding of Tobamovirus helicase to NNM was also studied. The docking study reveals the interaction between NNM and Tobamovirus virus helicase. Microscale Thermophoresis (MST) experiments have shown that NNM binds to Tobamovirus helicase with a dissociation constant of 4.64-12.63 µM. Therefore, these data are of great significance for the design and synthesis of new effective anti-plant virus drugs.


Subject(s)
Tobacco Mosaic Virus , Tobamovirus , Cytidine/pharmacology , Viral Proteins , Nicotiana
3.
J Agric Food Chem ; 71(32): 12325-12332, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37534830

ABSTRACT

Novel agents contain the structure of phthalimide, which has antibacterial, insecticidal, and herbicidal activities. Recently, studies reported that these compounds can bind to plant hormone receptors and play important regulatory roles. In this study, the functions of agents were studied with in vitro and in vivo assays. The abscisic acid (ABA) receptor pyrabactin resistant-like 2 (PYL2) protein in Arabidopsis thaliana was expressed, purified, and crystallized; the analysis results of the crystal structure showed three AtPYL2 subunits in each asymmetric unit. The affinity of compounds Z1-Z11 to the AtPYL2 protein was tested by microscale thermophoresis (MST) and then verified by isothermal titration calorimetry (ITC). Furthermore, the binding pockets were found using molecular docking to verify the target relationships. Relevant in vivo assays for seed germination and a root growth assay were conducted, with the plant samples being treated with target compounds. The results show that the compounds Z3, Z5, and Z10 target AtPYL2 and that the dissociation constants for binding by MST were 3.59, 3.54, and 3.97 µmol/L, respectively, among them, and the molecular docking results showed that compounds Z3, Z5, and Z10 formed hydrophobic interactions with amino acid residues through hydrogen or halogen bonding. This highlights their potential as an ABA receptor protein agonist. On the other hand, in vivo, compounds Z3, Z5, and Z10 had different inhibitory effects on seed germination, with compound Z5 inhibiting the root growth of A. thaliana and compound Z10 affecting root growth. In conclusion, these compounds could regulate plant growth and could be further developed as new plant-regulating agents.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Molecular Docking Simulation , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Arabidopsis/metabolism , Carrier Proteins/metabolism , Phthalimides/pharmacology , Gene Expression Regulation, Plant , Germination , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...