Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Environ Int ; 186: 108609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579452

ABSTRACT

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.


Subject(s)
Antioxidants , Dust , Electronic Waste , Occupational Exposure , Recycling , Occupational Exposure/analysis , Humans , Dust/analysis , China , Quinones/analysis , Amines/analysis
2.
Environ Sci Technol ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38237041

ABSTRACT

Herein, 16 traditional and 13 novel organophosphate esters (OPEs) in skin wipes, personal PM2.5, sputum, and nails (fingernails and toenails) and 7 OPE metabolites in urine synchronously obtained from 64 college students were analyzed. Similar compositional profiles of the OPEs were found in skin wipes and nails and in personal PM2.5 and induced sputum. Significant correlations were observed between the concentrations of high-lipophilicity low-volatility OPEs in skin wipes and nails and between the concentrations of high-volatility low-lipophilicity OPEs in personal PM2.5 and sputum. These results imply that OPEs in fingernails and toenails may mainly come from external sources rather than internal exposure, and human nails and sputum can be used as indicators of human exposure to OPEs. A comparison between the daily exposure doses of the OPEs in personal PM2.5 and sputum shows that more volatile compounds may have higher inhalation bioavailability, which should be considered to improve the accuracy of inhalation exposure assessments. According to comprehensive external and internal exposure assessment, dermal absorption may be a more dominant pathway than inhalation, and skin wipes may be the best representative environmental matrix of human exposure to OPEs.

3.
Environ Int ; 183: 108389, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118213

ABSTRACT

Herein, the trapping effectiveness of N95, filter KN95, medical surgical masks (MSMs), and disposable medical masks (DMMs) against 19 airborne traditional and novel organophosphate esters (OPEs) was evaluated. Laboratory simulations (n = 24 for each type of mask) showed that time-dependent accumulation of ∑19OPEs on the four types of masks ranged between 30.1 and 86.6 ng in 24 h, with the highest and lowest median amounts trapped by the N95 masks (53.3 ng) and DMMs (43.2 ng), respectively. The trapping efficiency of the four types of masks for ∑19OPEs decreased over time from 84 % to 39 % in 24 h, with N95 masks showing the highest median efficiency (70 %). Further, field investigations were conducted in five types of microenvironments (train, hospital, bus, supermarket, and canteen), and an analysis of 200 samples showed that ∑19OPEs were accumulated in the masks with a variable amount from 3.7 to 117 ng/mask. Consistent with the laboratory simulations, the N95 masks (29.0 ng/mask) exhibited the highest hourly median amount of trapped OPEs, followed by the KN95 masks (24.5 ng/mask), MSMSs (17.4 ng/mask), and DMMs (15.8 ng/mask). Triethyl phosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), and cresyl diphenyl phosphate (CDP) as well as 4-isopropylphenyl diphenyl phosphate (4IPPDPP) and 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP) were the most commonly detected traditional and novel OPEs. Based on the amount of OPEs trapped on the masks, we estimated the concentration of ∑19OPEs in the train microenvironment to be the highest (222 ng/m3), which is approximately 2-5 times higher than that in the other microenvironments. The results of this study prove that masks can effectively protect humans from exposure to OPEs and act as low-cost indicators of indoor contamination.


Subject(s)
Biphenyl Compounds , Flame Retardants , Masks , Humans , Flame Retardants/analysis , Esters/analysis , Organophosphates/analysis , Phosphates/analysis , Environmental Monitoring , China
4.
Environ Int ; 183: 108400, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142534

ABSTRACT

Organophosphate esters (OPEs) are a group of pollutants that are widely detected in the environment at high concentrations. They can adversely affect human health through multiple routes of exposure, including dermal uptake. Although attention has been paid to achieving an accurate and complete quantification of the dermal uptake of OPEs, existing evaluation methods and parameters have obvious weaknesses. This study reviewed two main categories of methodologies, namely the relative absorption (RA) model and the permeability coefficient (PC) model, which are widely used to assess the dermal uptake of OPEs. Although the PC model is more accurate and is increasingly used, the most important parameter in this model, the permeability coefficient (Kp), has been poorly characterised for OPEs, resulting in considerable errors in the estimation of the dermal uptake of OPEs. Thus, the detailed in vitro methods for the determination of Kp are summarised and sorted. Furthermore, the commonly used skin membranes are identified and the factors affecting Kp and corresponding mechanisms are discussed. In addition, the experimental conditions, conclusions, and available data on Kp values of the OPEs are thoroughly summarised. Finally, the corresponding knowledge gaps are proposed, and a more accurate and sophisticated experimental system and unknown Kp values for OPEs are suggested.


Subject(s)
Environmental Pollutants , Flame Retardants , Humans , Environmental Monitoring , Esters , Flame Retardants/analysis , Organophosphates , China
5.
J Hazard Mater ; 465: 133353, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38154186

ABSTRACT

To comprehensively characterize residents' exposure to major semi-volatile organic compounds (SVOCs), samples of indoor floor wipes, size-segregated airborne particles, gaseous air, food, and paired skin wipes were simultaneously collected from residential areas around a large non-ferrous metal smelting plant as compared with the control areas, and three typical SVOCs (including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and halogenated PAHs (HPAHs)) were determined. Comparison and correlation analysis among matrices indicated PAHs were the major contaminants emitted from metal smelting activities compared to HPAHs and PCBs, with naphthalene verified as the most important characteristic compound, and their accumulation on skin may be a comprehensive consequence of contact with floor dust and air. While patterns of human exposure pathways for the SVOCs were found to be clearly correlated to their vapor pressure, dermal absorption was the major contributor (51.1-76.3%) to total carcinogenic risk (TCR) of PAHs and HPAHs for surrounding residents, especially for low molecular weight PAHs, but dietary ingestion (98.6%) was the dominant exposure pathway to PCBs. The TCR of PAHs exceeded the acceptable level (1 × 10-4), implying smelting activities obviously elevated the health risk. This study will serve developing pertinent exposure and health risk prevention measures.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Polychlorinated Biphenyls/analysis , Air Pollution, Indoor/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Carcinogens/analysis , Receptors, Antigen, T-Cell/analysis , Environmental Monitoring , Air Pollutants/analysis
6.
Sci Total Environ ; 912: 169393, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104845

ABSTRACT

To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed. Comparatively, FR levels were relatively higher in developed regions in all mediums, and significant positive correlations between FR contamination and economic development level were observed in indoor dust and air. Over time, the concentration of BFRs showed a slightly decreasing trend in all mediums worldwide, whereas OPFRs represented an upward tendency in some regions (e.g., the USA and China). The occurrence levels of FRs and their metabolites in all external and internal media were generally correlated, implying a mutual indicative role among them. Dermal absorption generally contributed >60% of the total exposure of most FR monomers, and dust ingestion was dominant for several low volatile compounds, while inhalation was found to be negligible. The high-risk FR monomers (BDE-47, BDE-99 and TCIPP) identified by external exposure assessment showed similarity to the major FRs or metabolites observed in internal exposure mediums, suggesting the feasibility of using these methods to characterize human exposure and the contribution of indoor exposure to the human burden of FRs. This review highlights the significant importance of exposure assessment based on multiple mediums for future studies.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Humans , Environmental Exposure/analysis , Flame Retardants/analysis , Air Pollution, Indoor/analysis , Dust/analysis , Halogenated Diphenyl Ethers/analysis , China , Culture Media/analysis , Organophosphates/analysis , Environmental Monitoring
7.
Environ Sci Technol ; 57(48): 20127-20137, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37800548

ABSTRACT

Wastewater treatment plants (WWTPs) are typical point sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. The suspect and nontarget screening based on gas chromatography or liquid chromatography-high resolution mass spectrometry were performed on atmosphere, wastewater, and sludge samples collected from two WWTPs in Tianjin to discover emerging PFAS and their fate in this study. A total of 40 PFAS (14 neutral and 26 ionic) and 64 PFAS were identified in the atmosphere and wastewater/sludge, respectively, among which 5 short-chain perfluoroalkyl sulfonamide derivatives, 4 ionic PFAS, and 15 aqueous film-forming foam-related cationic or zwitterionic PFAS have rarely or never been reported in WWTPs in China. Active air sampling is more conducive to the enrichment of emerging PFAS, while passive sampling is inclined to leave out some ultrashort-chain PFAS or unstable transformation intermediates. Moreover, most precursors and intermediates could be enriched in the atmosphere at night, while the PFAS associated with aerosols with high water content or particles enter the atmosphere easily during the day. Although most emerging PFAS could not be eliminated efficiently in conventional treatment units, deep bed filtration and advanced oxidation processes could partly remove some emerging precursors.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Water , China
8.
J Hazard Mater ; 460: 132411, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37666171

ABSTRACT

The objectives of this study were to identify both legacy and emerging per- and polyfluoroalkyl substances (PFAS) from three typical fluoridated industrial parks (FIPs) in China, and to assess their environmental occurrence and fate. Complementary suspect target and nontarget screening were implemented, and a total of 111 emerging PFAS were identified. Based on the multi-mass scale analysis, 25 emerging PFAS were identified for the first time, including 24 per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and 1 ultra-short chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs, C2), with a maximum percentage of 48.2 % in nontarget PFAS (exclude target PFAS). The composition of PFAS identified in different media was influenced by functional groups, carbon chain length, substituents and ether bond insertion, with poly-hydrogen substituted being preferably in water and a more diverse pattern of PFECAs in sediments. The patterns of PFAS homologs revealed distinct differences among the three typical FIPs in the shift of PFAS production patterns. The C4-PFAS and short-chain carboxylic acids (≤C6) were the main PFAS in the Fuxin and Changshu, respectively. In contrast, perfluorooctanoic acid (PFOA, C8) remained dominant in Zibo, and the highest point concentrations in water and sediment were up to 706 µg/L and 553 µg/g, respectively.

9.
J Hazard Mater ; 459: 132271, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37582303

ABSTRACT

E-waste dismantlers' occupational exposure to plasticizers, particularly non-phthalate (NPAE) plasticizers, is poorly understood. This study monitored 11 phthalates (PAEs) and 16 NPAEs in dust and hand wipe samples from Central China e-waste workplace and ordinary homes. Concentrations of plasticizers in dust from e-waste dismantling workshops (median: 217 µg/g) were significantly lower than that from ordinary homes (462 µg/g; p < 0.01), however, the trend was similar but not significant in hand wipes from these two scenarios (50.2 vs. 72.3 µg/m2; p = 0.139). PAEs were still the dominant plasticizers, which is, on average, 5.46 and 3.58-fold higher than NPAEs. In all samples, di-(2ethylhexyl) phthalate (65.4%) and tri-octyl trimellitate (44.9%) were the most common PAE and NPAE plasticizers. Increasing dust concentrations of di-iso-nonyl ester 1,2-cyclohexane dicarboxylic acid, citrates and sebacates were significantly associated with their levels in worker's hand wipe, by contrast, this trend was not found in general population. Dust ingestion was the main channel, followed by hand-to-mouth contact, all participants' daily plasticizer intakes (median: 154 ng/kg bw/day) are within safety limits. Our work highlights knowledge gaps about co-exposure to PAEs and NPAEs by multiple pathways in occupational e-waste workers, which could provide baseline data in the future.


Subject(s)
Occupational Exposure , Phthalic Acids , Humans , Environmental Exposure/analysis , Plasticizers/analysis , Dust , Phthalic Acids/analysis
10.
J Environ Manage ; 344: 118745, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37562255

ABSTRACT

Efficient removal of perfluoroalkyl acids (PFAAs), especially short-chain ones, from contaminated water is of great challenge and is urgently called for so as to safeguard the ecosystem and human health. Herein, polypyrrole (PPy) functionalized biochar (BC) composites were innovatively synthesized by an in situ self-sacrificial approach to allow efficient capture of PFAAs with different chain lengths. Compared with conventional PPy-based composites synthesized by direct polymerization using FeCl3 as an oxidizing agent, PPy/BC composites were fabricated utilizing freshly generated Fe3+ as an oxidizing agent from self-sacrificial Fe3O4 for pyrrole monomers in situ polymerizing on BC. As a result, with the support of BC and gradual release of Fe3+, PPy overcame its tendency to aggregate and became uniformly dispersed on BC, and meanwhile, PPy could well tailor the surface chemistry of BC to endow its positively charged surface. Consequently, the composites exhibited strong sorption capacities of 3.89 and 1.53 mmol/g for short-chain perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), 2.55 and 1.22 mmol/g for long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, which were superior to those of pristine BC, commercial activated carbon, and anion exchange resins reported. Additionally, they could effectively remove 17 different classes of per- and polyfluoroalkyl substances (PFAS) (removal >95%) from actual PFAS-contaminated water, and the spent sorbent could be well regenerated and reused at least 5 times. An integrated analysis indicated that such an outstanding PFAA sorption performance on PPy/BC composites could be mainly attributed to surface adsorption enhanced by electrostatic attractions (anion exchange interaction) with the traditional hydrophobic interaction and pore filling of less contribution, particularly for short-chain analogues. These results are expected to inform the design of BC with greater ability to remove PFAS from water and the new sorbent could help water facilities comply with PFAS regulations.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Polymers , Charcoal/chemistry , Pyrroles , Ecosystem , Water Pollutants, Chemical/chemistry , Water , Fluorocarbons/analysis , Oxidants
11.
Environ Sci Technol ; 57(25): 9416-9425, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294550

ABSTRACT

Electrochemical oxidation (EO) has been shown to have the unique ability to degrade perfluorooctanoic acid (PFOA), although the radical chemistry involved in this degradation is unclear, particularly in the presence of chloride ions (Cl-). In this study, reaction kinetics, free radical quenching, electron spin resonance, and radical probes were used to examine the roles of ·OH and reactive chlorine species (RCS, including Cl·, Cl2•-, and ClO·) in the EO of PFOA. Using EO in the presence of NaCl, PFOA degradation rates of 89.4%-94.9% and defluorination rates of 38.7%-44.1% were achieved after 480 min with PFOA concentrations ranging from 2.4 to 240 µM. The degradation occurred via the synergistic effect of ·OH and Cl· rather than through direct anodic oxidation. The degradation products and density functional theory (DFT) calculations revealed that Cl· triggered the first step of the reaction, thus the initial direct electron transfer was not the rate-limiting step of PFOA degradation. The change in Gibbs free energy of the reaction caused by Cl· was 65.57 kJ mol-1, which was more than two times lower than that triggered by ·OH. However, ·OH was involved in the subsequent degradation of PFOA. The synergistic effect of Cl· and ·OH in PFOA degradation is demonstrated for the first time in this study, which is promising for the development of electrochemical technology to remove perfluorinated alkyl substances from the environment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Chlorine , Chlorides , Oxidation-Reduction , Caprylates/chemistry , Water Pollutants, Chemical/chemistry
12.
Sci Total Environ ; 878: 163176, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37003336

ABSTRACT

Electronic waste (e-waste) dismantling facilities are a well-known source of emerging contaminants including organophosphate esters (OPEs). However, little information is available regarding the release characteristics and co-contaminations of tri- and di-esters. This study, therefore, investigated a broad range of tri- and di-OPEs in dust and hand wipe samples collected from an e-waste dismantling plant and homes as comparison. The median ∑tri-OPE and ∑di-OPE levels in dust and hand wipe samples were approximately 7- and 2-fold higher than those in the comparison group, respectively (p < 0.01). Triphenyl phosphate (median: 11,700 ng/g and 4640 ng/m2) and bis(2-ethylhexyl) phosphate (median: 5130 ng/g and 940 ng/m2) were the dominant components of tri- and di-OPEs, respectively. The combination of Spearman rank correlations and the determinations of molar concentration ratios of di-OPEs to tri- OPEs revealed that apart from the degradation of tri-OPEs, di-OPEs could originate from direct commercial application, or as impurities in tri-OPE formulas. Significant positive correlations (p < 0.05) were found for most tri- and di-OPE levels between the dust and hand wipes from dismantling workers, whereas this was not observed in those from the ordinary microenvironment. Our results provide robust evidence that e-waste dismantling activities contribute to OPEs contamination in the surroundings and further human exposure pathways and toxicokinetics are needed to be elucidated.


Subject(s)
Electronic Waste , Flame Retardants , Humans , Dust/analysis , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , China , Environmental Monitoring
13.
J Hazard Mater ; 445: 130653, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37056013

ABSTRACT

Extensive use of nitrogen-based flame retardants (NFRs) has resulted in their widespread environmental occurrence. To investigate human exposure to NFRs on a national scale, the abundance and spatial distribution of NFRs were assessed in urine specimens collected from 13 cities in China. Six out of eight target NFRs were detectable in more than half of the urine samples, and the total concentrations of NFRs ranged from 3.22 to 880 ng/mL with a median of 46.7 ng/mL. Cyanuric acid was the most abundant chemical, accounting for 66.2%, followed by melamine (16.3%), ammelide (10.8%), and ammeline (6.11%). Regional differences in concentrations and composition profiles of NFRs were observed within China as a result of different production and application profiles. In addition, we found that urinary NFRs levels were much higher than but statistically correlated with that of organophosphates (r2 = 0.69, p < 0.05), another class of phosphorus-based flame retardant, implying similar emission sources and/or human exposure pathways. Furthermore, the estimated daily intakes and hazard quotients revealed that the Chinese population's exposure to NFRs is within safe limits. To the best of our knowledge, this is the first study to document the ubiquitous occurrence and region-specific variations of human exposure to NFRs in China.


Subject(s)
Environmental Exposure , Flame Retardants , Humans , China , Cities , East Asian People , Flame Retardants/analysis , Organophosphates
14.
Environ Sci Technol ; 57(11): 4454-4463, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36867107

ABSTRACT

Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.


Subject(s)
Liquid Crystals , Occupational Exposure , Humans , Skin Absorption , Molecular Docking Simulation , Skin/chemistry , Skin/metabolism , Occupational Exposure/analysis
15.
Chemosphere ; 326: 138494, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966925

ABSTRACT

The prevalence of metabolic syndrome (MetS) is increasing at an alarming rate worldwide, particularly among elderly individuals. Exposure to various metals has been linked to the development of MetS. However, limited studies have focused attention on the elderly population living in active mining districts. Participants with MetS (N = 292) were matched for age (±2 years old) and sex with a healthy subject (N = 292). We measured the serum levels of 14 metals in older people aged 65-85 years. Conditional logistic regression, restricted cubic spline model, multiple linear regression, and Bayesian Kernel Machine Regression (BKMR) were applied to estimate potential associations between multiple metals and the risk of MetS. Serum levels of Sb and Fe were significantly higher than the controls (0.58 µg/L vs 0.46 µg/L, 2167 µg/L vs 2042 µg/L, p < 0.05), while Mg was significantly lower (20035 µg/L vs 20,394 µg/L, p < 0.05). An increased risk of MetS was associated with higher serum Sb levels (adjusted odds ratio (OR) = 1.61 for the highest tertile vs. the lowest tertile, 95% CI = 1.08-2.40, p-trend = 0.018) and serum Fe levels (adjusted OR = 1.55 for the highest tertile, 95% CI = 1.04-2.33, p-trend = 0.032). Higher Mg levels in serum may have potential protective effects on the development of MetS (adjusted OR = 0.61 for the highest tertile, 95% CI = 0.41-0.91, p-trend = 0.013). A joint exposure analysis by the BKMR model revealed that the mixture of 12 metals (except Tl and Cd) was associated with increased risk of MetS. Our results indicated that exposure to Sb and Fe might increase the risk of MetS in an elderly population living in mining-intensive areas. Further work is needed to confirm the protective effect of Mg on MetS.


Subject(s)
Metabolic Syndrome , Humans , Aged , Metabolic Syndrome/epidemiology , Case-Control Studies , Bayes Theorem , Multivariate Analysis , China/epidemiology
16.
J Hazard Mater ; 451: 131204, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36931218

ABSTRACT

Occupational exposure to per- and polyfluoroalkyl substances (PFASs) is of serious concern because their adverse health effects. Nevertheless, knowledge regarding contamination in e-waste dismantling regions is rather scarce. We therefore analysed seven neutral PFASs (n-PFASs) and forty ionized PFASs (i-PFASs) in dust and hand wipes collected from an e-waste dismantling plant and homes. Both dust (1370 ng/g) and workers' hand wipe (1100 ng/m2) in e-waste dismantling workshops contained significantly higher median levels of ∑PFASs than those from homes (684 ng/g and 444 ng/m2) (p < 0.01). ∑PFAS concentrations in dust and on workers' hand wipes from workshops were significantly higher than those from storage area. 8:2 fluorotelomer alcohol was the dominant n-PFAS in workshop dust (70.7%) and on worker's hand wipes (46.6%). Perfluoroalkyl carboxylic acids (C2 -C3) were the significant components (based on concentration) of i-PFASs in dust (57.9%) and on hand wipes (89.6%). A significant positive correlation (p < 0.001) of ∑PFAS concentrations between workshop dust and workers' hand wipes was observed, indicating that they come from common sources. Compared to dust ingestion, hand-to-mouth contact was highlighted as a vital exposure route, accounting for 68.8% for workers and 72.2% for residential population, respectively, of the sum of two exposure doses.


Subject(s)
Electronic Waste , Fluorocarbons , Occupational Exposure , Humans , Electronic Waste/analysis , Fluorocarbons/analysis , Occupational Exposure/analysis , Dust/analysis , Carboxylic Acids/analysis , Environmental Monitoring , Environmental Exposure/analysis , China
17.
Environ Sci Technol ; 57(10): 4187-4198, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36848063

ABSTRACT

A large-scale survey was conducted by measuring five organophosphite antioxidants (OPAs) and three novel organophosphate esters (NOPEs) in 139 dust samples across China. The median summed concentrations of OPAs and NOPEs in outdoor dust were 33.8 ng/g (range: 0.12-53,400 ng/g) and 7990 ng/g (2390-27,600 ng/g), respectively. The dust concentrations of OPAs associated with the increasing economic development and population density from western to eastern China, whereas the NOPE concentration in Northeast China (median, 11,900 ng/g; range, 4360-16,400 ng/g) was the highest. Geographically, the distribution of NOPEs was significantly associated with annual sunshine duration and precipitation at each sampling site. Results of laboratory experiments further revealed that the simulated sunlight irradiation promoted the heterogeneous phototransformation of OPAs in dust, and this process was accelerated with the existence of reactive oxygen species and enhanced relative humidity. Importantly, during this phototransformation, the hydroxylated, hydrolyzed, dealkylated, and methylated products, e.g., bis(2,4-di-tert-butylphenyl) methyl phosphate, were identified by nontargeted analysis, part of which were estimated to be more toxic than their parent compounds. The heterogeneous phototransformation pathway of OPAs was suggested accordingly. For the first time, the large-scale distribution of OPAs and NOPEs and the phototransformation of these "new chemicals" in dust were revealed.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Environmental Monitoring , Antioxidants , Dust/analysis , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , China , Air Pollution, Indoor/analysis
18.
Chemosphere ; 314: 137747, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608880

ABSTRACT

Nitrogenous flame retardants (NFRs) have aroused worldwide public concern as their nephrotoxic effect. However, knowledge regarding the pathogenesis mechanism of their exposure to induce kidney injury remains largely unknown. In this study, eight NFRs, four oxidative stress biomarkers (OSBs), and one kidney injury biomarker, namely neutrophil gelatinase-associated lipocalin (NGAL), were measured in urine specimens collected from residents living around e-waste disassembly and reference areas, representing two exposure scenarios. Significant higher concentrations of Σ8NFR (median: 70.6 vs. 33.8 µg/g Cre) and five biomarkers (124 vs. 97.4 µg/g Cre) were found in urines of populations living in e-waste site compared to those in the reference site (p < 0.05). Primary NFRs exhibited significant positive associations with OSBs and NGAL regardless of the population examined, implying that chronic NFRs exposure could induce oxidative stress and kidney damage. By using structure equation model, we found that oxidative stress, particularly DNA and RNA oxidation mediated 16.1% of the total effect of NFRs on NGAL in e-waste related people, but not on the general population. Overall, this study suggests long-term chronic exposure to NFRs can induce oxidative stress and renal injury in humans but the pathogenesis mode may be scenario-specific.


Subject(s)
Electronic Waste , Flame Retardants , Humans , Flame Retardants/toxicity , Lipocalin-2 , Electronic Waste/adverse effects , Electronic Waste/analysis , China , Oxidative Stress , Biomarkers/urine , Kidney
19.
Toxics ; 11(1)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36668783

ABSTRACT

Novel brominated flame retardants (NBFRs) have been widely used as alternatives to legacy BFRs. However, information on the contamination status and human exposure risks of electronic waste (e-waste)-derived NBFRs in the e-waste workplace is limited. In this study, six NBFRs and the legacy BFRs, hexabromocyclododecanes (HBCDs), were analyzed in 50 dust samples from an e-waste-dismantling workplace in Central China. The dust concentration of NBFRs in e-waste-dismantling workshops (median, 157−169 ng/g) was found to be significantly higher than those in an outdoor environment (17.3 ng/g) (p < 0.01). Differently, the highest median concentration of HBCDs was found in dust from the dismantling workshop for cellphones and computers (367 ng/g) among studied areas. The bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEHTBP) was the predominant compound, which contributed 66.0−88.0% of measured NBFR concentrations. NBFRs might originate from plastic and rubber materials in wastes based on the correlation and principal component analysis. Moreover, the total estimated daily intakes (average scenario) of NBFRs were calculated at 2.64 × 10−2 ng/kg bw/d and 2.91× 10−2 ng/kg bw/d for the male and female dismantling workers, respectively, via dust ingestion, inhalation, and dermal contact pathways, which were lower than the reference dose values, and thus indicated a limited human exposure risk for NBFRs at the current level. Although the dust concentrations and daily intakes of NBFRs were still lower than those of other emerging pollutants (e.g., organophosphate and nitrogenous flame retardants) measured in the same sampling set, the elevated levels of NBFRs suggested the progressive BFR replacement process in China, which deserves more attention regarding their adverse effects on both the environment and human health.

20.
Environ Int ; 169: 107535, 2022 11.
Article in English | MEDLINE | ID: mdl-36152360

ABSTRACT

Liquid crystal monomers (LCMs) are widely used chemicals and ubiquitous emerging organic pollutants in the environment, some of which have persistent, bio-accumulative, and toxic potentials. Elevated levels of LCMs have been found in the e-waste dismantling associated areas. However, information on their internal exposure bio-monitoring is scarce. For the first time, occurrences of LCMs were observed in the serum samples of occupational workers (n = 85) from an e-waste dismantling area in South China. Twenty-nine LCMs were detected in serum samples of the workers, with a median value of 35.2 ng/mL (range: 7.78-276 ng/mL). Eight noticed LCMs were found to have relatively high detection frequencies ranging from 52.9% to 96.5%. The correlation analysis of individual LCMs indicated potential common applications and similar sources to the LCMs in occupational workers. Fluorinated LCMs were identified as the predominant monomers in the workers. Additionally, the estimated daily intake of the LCMs in the occupational workers was significantly higher than those in residents from the reference areas (p < 0.05, Mann-Whitney U Test, median values: 1.46 ng/kg bw/day versus 0.40 ng/kg bw/day), indicating a substantially higher exposure level to e-waste dismantling workers.


Subject(s)
Electronic Waste , Environmental Pollutants , Liquid Crystals , China , Environmental Monitoring , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...