Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.888
Filter
1.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825657

ABSTRACT

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Subject(s)
Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
2.
PNAS Nexus ; 3(4): pgae142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38689709

ABSTRACT

China is one of the largest producers and consumers of coal in the world. The National Action Plan on Air Pollution Prevention and Control in China (2013-2017) particularly aimed to reduce emissions from coal combustion. Here, we show whether the acute health effects of PM2.5 changed from 2013 to 2018 and factors that might account for any observed changes in the Beijing-Tianjin-Hebei (BTH) and the surrounding areas where there were major reductions in PM2.5 concentrations. We used a two-stage analysis strategy, with a quasi-Poisson regression model and a random effects meta-analysis, to assess the effects of PM2.5 on mortality in the 47 counties of BTH. We found that the mean daily PM2.5 levels and the SO42- component ratio dramatically decreased in the study period, which was likely related to the control of coal emissions. Subsequently, the acute effects of PM2.5 were significantly decreased for total and circulatory mortality. A 10 µg/m3 increase in PM2.5 concentrations was associated with a 0.16% (95% CI: 0.08, 0.24%) and 0.02% (95% CI: -0.09, 0.13%) increase in mortality from 2013 to 2015 and from 2016 to 2018, respectively. The changes in air pollution sources or PM2.5 components appeared to have played a core role in reducing the health effects. The air pollution control measures implemented recently targeting coal emissions taken in China may have resulted in significant health benefits.

3.
Neural Netw ; 176: 106342, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692188

ABSTRACT

Reinforcement Learning (RL) is a significant machine learning subfield that emphasizes learning actions based on environment to obtain optimal behavior policy. RL agents can make decisions at variable time scales in the form of temporal abstractions, also known as options. The issue of discovering options has seen a considerable research effort. Most notably, the Interest Option Critic (IOC) algorithm first extends the initial set to the interest function, providing a method for learning options specialized to certain state space regions. This approach offers a specific attention mechanism for action selection. Unfortunately, this method still suffers from the classic issues of poor data efficiency and lack of flexibility in RL when learning options end-to-end through backpropagation. This paper proposes a new approach called Salience Interest Option Critic (SIOC), which chooses subsets of existing initiation sets for RL. Specifically, these subsets are not learned by backpropagation, which is slow and tends to overfit, but through particle filters. This approach enables the rapid and flexible identification of critical subsets using only reward feedback. We conducted experiments in discrete and continuous domains, and our proposed method demonstrate higher efficiency and flexibility than other methods. The generated options are more valuable within a single task and exhibited greater interpretability and reusability in multi-task learning scenarios.

4.
Integr Zool ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695096

ABSTRACT

The Tibetan antelope (Pantholops hodgsonii), blue sheep (Pseudois nayaur), and Tibetan sheep (Ovis aries) are the dominant small ruminants in the Three-River-Source National Park (TRSNP). However, knowledge about the association between gut microbiota and host adaptability remains poorly understood. Herein, multi-omics sequencing approaches were employed to investigate the gut microbiota-mediated forage adaption in these ruminants. The results revealed that although wild ruminants (WR) of P. hodgsoni and P. nayaur were faced with severe foraging environments with significantly low vegetation coverage and nutrition, the apparent forage digestibility of dry matter, crude protein, and acid detergent fiber was significantly higher than that of O. aries. The 16s rRNA sequencing showed that the gut microbiota in WR underwent convergent evolution, and alpha diversity in these two groups was significantly higher than that in O. aries. Moreover, indicator species, including Bacteroidetes and Firmicutes, exhibited positive relationships with apparent forage digestibility, and their relative abundances were enriched in the gut of WR. Enterotype analysis further revealed that enterotype 1 belonged to WR, and the abundance of fatty acid synthesis metabolic pathway-related enzyme genes was significantly higher than enterotype 2, represented by O. aries. Besides, the metagenomic analysis identified 14 pathogenic bacterial species, among which 10 potentially pathogenic bacteria were significantly enriched in the gut microbiota of O. aries. Furthermore, the cellulolytic strains and genes encoding cellulase and hemicellulase were significantly enriched in WR. In conclusion, our results provide new evidence of gut microbiota to facilitate wildlife adaption in severe foraging environments of the TRSNP, China.

5.
Cancer Immunol Res ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701369

ABSTRACT

Glutamine metabolism in tumor microenvironments critically regulates anti-tumor immunity. Using glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes (TIMs). We show JHU083-mediated glutamine antagonism in tumor microenvironments induces TNF, pro-inflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibit increased tumor cell phagocytosis and diminished pro-angiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken TCA cycle, and purine metabolism disruption. Although the anti-tumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased Treg abundance. Finally, JHU083 caused a ubiquitous shutdown in glutamine utilizing metabolic pathways in tumor cells, leading to reduced HIF-1alpha, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key anti-tumor features.

6.
Small ; : e2312268, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721981

ABSTRACT

The rapid development in nanotechnology has necessitated accurate and efficient assembly strategies for nanomaterials. Monolayer assembly of nanomaterials (MAN) represents a challenging and important architecture to manufacture and is critical in understanding interactions among nanomaterials, solvents, and substrates. MAN enables highly tunable performance in electronic and photonic devices. This review summarizes the recent progress on the methods to achieve MAN and discusses important control factors. Moreover, the importance of MAN is elaborated by a broad range of applications in electronics and photonics. In the end, the opportunities as well as challenges in manufacturing and new applications are outlooked.

7.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727988

ABSTRACT

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Subject(s)
Akkermansia , Glucagon-Like Peptide 1 , Lactococcus lactis , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/genetics , Akkermansia/genetics , Akkermansia/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Humans , L Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
8.
Environ Res ; 252(Pt 3): 119040, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692424

ABSTRACT

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.

9.
J Nucl Med ; 65(Suppl 1): 4S-11S, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719234

ABSTRACT

Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.


Subject(s)
Endopeptidases , Gelatinases , Membrane Proteins , Serine Endopeptidases , Translational Research, Biomedical , Humans , China , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Gelatinases/antagonists & inhibitors , Gelatinases/metabolism , Serine Endopeptidases/metabolism , Radioactive Tracers , Animals , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Positron-Emission Tomography
10.
Oncol Rep ; 51(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38695244

ABSTRACT

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the Transwell cell migration and invasion assay data featured in Figs. 5C and 6C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published elsewhere prior to the submission of this paper to Oncology Reports, or were submitted for consideration for publication at around the same time. In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 37: 2743­2750, 2017; DOI: 10.3892/or.2017.5555].

11.
Adv Mater ; : e2312755, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692290

ABSTRACT

Depression is one of the most common mental illnesses and is a well-known risk factor for suicide, characterized by low overall efficacy (<50%) and high relapse rate (40%). A rapid and objective approach for screening and prognosis of depression is highly desirable but still awaits further development. Herein, a high-performance metabolite-based assay to aid the diagnosis and therapeutic evaluation of depression by developing a vacancy-engineered cobalt oxide (Vo-Co3O4) assisted laser desorption/ionization mass spectrometer platform is presented. The easy-prepared nanoparticles with optimal vacancy achieve a considerable signal enhancement, characterized by favorable charge transfer and increased photothermal conversion. The optimized Vo-Co3O4 allows for a direct and robust record of plasma metabolic fingerprints (PMFs). Through machine learning of PMFs, high-performance depression diagnosis is achieved, with the areas under the curve (AUC) of 0.941-0.980 and an accuracy of over 92%. Furthermore, a simplified diagnostic panel for depression is established, with a desirable AUC value of 0.933. Finally, proline levels are quantified in a follow-up cohort of depressive patients, highlighting the potential of metabolite quantification in the therapeutic evaluation of depression. This work promotes the progression of advanced matrixes and brings insights into the management of depression.

12.
Diabetes Metab Syndr Obes ; 17: 1923-1939, 2024.
Article in English | MEDLINE | ID: mdl-38711674

ABSTRACT

Aim: To evaluate the advantages and problems in the diagnosis and treatment of diabetic foot (DF) patients by analyzing the results of a 5-year follow-up of the organ system based (TOSF) treatment model. Methods: A retrospective study was conducted in 229 patients with diabetic foot. Chi-square test and rank-sum test were used to analyze the effects of patients' general condition, behavioral and nutritional status, degree of infection (inflammatory markers), comorbidity, diabetic foot grade/classification, and revascularization on readmission rate, amputation rate, all-cause mortality, incidence of other complications, and wound healing time. Logistic regression was used to analyze the risk factors affecting the prognosis of diabetic foot. Kaplan-Meier survival curve was used to analyze the differences in amputation rate and mortality rate at each time point. Results: This study showed that nutritional status, degree of infection, and revascularization influenced readmission rates. General condition, behavior and nutritional status, degree of infection, Wagner grade and revascularization affect the amputation rate. General conditions, behavioral and nutritional status, degree of infection, comorbidities, classification and revascularization affect the mortality of patients. Age and white blood cell(WBC) count affected the incidence of other complications. Influence of infection degree and Wagner grade and revascularization in patients with wound healing time. Revascularization was an independent protective factor for readmission, amputation, and mortality.Elevated serum inflammatory markers are an independent risk factor for amputation. Hypoproteinemia is an independent risk factor for mortality. Conclusion: In the "TOSF" diagnosis and treatment pattern, diabetic foot patients have a good prognosis. Special attention should be paid to the screening and revascularization of lower extremity vascular disease in patients with diabetic foot.

13.
Gene ; 920: 148528, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38703871

ABSTRACT

BACKGROUND: The complex relationship between atrial fibrillation (AF) and type 2 diabetes mellitus (T2DM) suggests a potential role for epicardial adipose tissue (EAT) that requires further investigation. This study employs bioinformatics and experimental approaches to clarify EAT's role in linking T2DM and AF, aiming to unravel the biological mechanisms involved. METHOD: Bioinformatics analysis initially identified common differentially expressed genes (DEGs) in EAT from T2DM and AF datasets. Pathway enrichment and network analyses were then performed to determine the biological significance and network connections of these DEGs. Hub genes were identified through six CytoHubba algorithms and subsequently validated biologically, with further in-depth analyses confirming their roles and interactions. Experimentally, db/db mice were utilized to establish a T2DM model. AF induction was executed via programmed transesophageal electrical stimulation and burst pacing, focusing on comparing the incidence and duration of AF. Frozen sections and Hematoxylin and Eosin (H&E) staining illuminated the structures of the heart and EAT. Moreover, quantitative PCR (qPCR) measured the expression of hub genes. RESULTS: The study identified 106 DEGs in EAT from T2DM and AF datasets, underscoring significant pathways in energy metabolism and immune regulation. Three hub genes, CEBPZ, PAK1IP1, and BCCIP, emerged as pivotal in this context. In db/db mice, a marked predisposition towards AF induction and extended duration was observed, with HE staining verifying the presence of EAT. Additionally, qPCR validated significant changes in hub genes expression in db/db mice EAT. In-depth analysis identified 299 miRNAs and 33 TFs as potential regulators, notably GRHL1 and MYC. GeneMANIA analysis highlighted the hub genes' critical roles in stress responses and leukocyte differentiation, while immune profile correlations highlighted their impact on mast cells and neutrophils, emphasizing the genes' significant influence on immune regulation within the context of T2DM and AF. CONCLUSION: This investigation reveals the molecular links between T2DM and AF with a focus on EAT. Targeting these pathways, especially EAT-related ones, may enable personalized treatments and improved outcomes.


Subject(s)
Adipose Tissue , Atrial Fibrillation , Diabetes Mellitus, Type 2 , Gene Expression Profiling , Pericardium , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Atrial Fibrillation/genetics , Animals , Adipose Tissue/metabolism , Mice , Pericardium/metabolism , Pericardium/pathology , Gene Expression Profiling/methods , Computational Biology/methods , Gene Regulatory Networks , Male , Humans , Transcriptome , Mice, Inbred C57BL , Epicardial Adipose Tissue
14.
Mol Cancer ; 23(1): 88, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702734

ABSTRACT

Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Neoplasms , Ubiquitin-Specific Proteases , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Molecular Targeted Therapy , DNA Repair , Apoptosis/drug effects
15.
J Med Chem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748820

ABSTRACT

The lack of selective and safe in vivo IRE1α tool molecules has limited the evaluation of IRE1α as a viable target to treat multiple myeloma. Focus on improving the physicochemical properties of a literature compound by decreasing lipophilicity, molecular weight, and basicity allowed the discovery of a novel series with a favorable in vitro safety profile and good oral exposure. These efforts culminated in the identification of a potent and selective in vivo tool compound, G-5758, that was well tolerated following multiday oral administration of doses up to 500 mg/kg. G-5758 demonstrated comparable pharmacodynamic effects to induced IRE1 knockdown as measured by XBP1s levels in a multiple myeloma model (KMS-11).

16.
PLoS One ; 19(5): e0299696, 2024.
Article in English | MEDLINE | ID: mdl-38728335

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 disease, which represents a new life-threatening disaster. Regarding viral infection, many therapeutics have been investigated to alleviate the epidemiology such as vaccines and receptor decoys. However, the continuous mutating coronavirus, especially the variants of Delta and Omicron, are tended to invalidate the therapeutic biological product. Thus, it is necessary to develop molecular entities as broad-spectrum antiviral drugs. Coronavirus replication is controlled by the viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme, which is required for the virus's life cycle. In the cases of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV), 3CLpro has been shown to be a promising therapeutic development target. Here we proposed an attention-based deep learning framework for molecular graphs and sequences, training from the BindingDB 3CLpro dataset (114,555 compounds). After construction of such model, we conducted large-scale screening the in vivo/vitro dataset (276,003 compounds) from Zinc Database and visualize the candidate compounds with attention score. geometric-based affinity prediction was employed for validation. Finally, we established a 3CLpro-specific deep learning framework, namely GraphDPI-3CL (AUROC: 0.958) achieved superior performance beyond the existing state of the art model and discovered 10 molecules with a high binding affinity of 3CLpro and superior binding mode.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Deep Learning , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Protein Binding , COVID-19/virology , Molecular Docking Simulation
17.
BMJ Open ; 14(5): e077183, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749692

ABSTRACT

INTRODUCTION: Postoperative pulmonary complications (PPCs) occur frequently in patients undergoing lung surgery under general anaesthesia and are strongly associated with longer postoperative hospital stays and increased mortality. The existing literature has shown that a higher level of preoperative physical activity (PA) plays a positive role in the low incidence of postoperative complications and the quality of life in patients undergoing lung surgery. However, the association between preoperative PA levels and the incidence of PPCs has rarely been studied, particularly in thoracoscopic lung surgery. This study aims to evaluate PA levels in patients undergoing thoracoscopic lung surgery using the International Physical Activity Questionnaire and to investigate the association between PA levels and the incidence of PPCs. METHODS AND ANALYSIS: A total of 204 participants aged 18-80 years undergoing thoracoscopic lung surgery (thoracoscopic wedge resection, thoracoscopic segmentectomy and thoracoscopic lobectomy) will be included in the study. The primary outcome is the incidence of PPCs within the first 5 postoperative days. The secondary outcomes include the number of PPCs, the incidence of PPCs 1 month postoperatively, the arterial blood levels of inflammatory markers, the incidence of postoperative adverse events within the first 5 postoperative days, extubation time, unplanned admission to the intensive care unit, postoperative length of stay and mortality 1 month postoperatively. ETHICS AND DISSEMINATION: The study was reviewed and approved by the Research Ethics Committee of the First Affiliated Hospital of Shandong First Medical University on 31 March 2022 (YXLL-KY-2022(014)) and is registered at ClinicalTrials.gov. We plan to disseminate the data and findings of this study in international and peer-reviewed journals. TRIAL REGISTRATION NUMBER: The trial has been prospectively registered at the clinicaltrials.gov registry (NCT05401253).


Subject(s)
Anesthesia, General , Exercise , Postoperative Complications , Humans , Postoperative Complications/epidemiology , Prospective Studies , Aged , Middle Aged , Adult , Surveys and Questionnaires , Female , Male , Young Adult , Aged, 80 and over , Adolescent , Thoracoscopy/methods , Quality of Life , Length of Stay/statistics & numerical data , Pneumonectomy/methods , Pneumonectomy/adverse effects , Incidence
18.
Front Oncol ; 14: 1330165, 2024.
Article in English | MEDLINE | ID: mdl-38774407

ABSTRACT

Objective: To evaluate the impact of sequential (first- to third-generation) epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment on top-corrected QT interval (top-QTc) in non-small cell lung cancer (NSCLC) patients. Methods: We retrospectively reviewed the medical records of NSCLC patients undergoing sequential EGFR-TKI treatment at Shanghai Chest Hospital between October 2016 and August 2021. The heart rate (HR), top-QT interval, and top-QTc of their ECGs were extracted from the institutional database and analyzed. Logistic regression was performed to identify predictors for top-QTc prolongation. Results: Overall, 228 patients were enrolled. Compared with baseline (median, 368 ms, same below), both first-generation (376 ms vs. 368 ms, p < 0.001) and sequential third-generation EGFR-TKIs (376 ms vs. 368 ms, p = 0.002) prolonged top-QT interval to a similar extent (p = 0.635). Top-QTc (438 ms vs. 423 ms, p < 0.001) and HR (81 bpm vs.79 bpm, p = 0.008) increased after first-generation EGFR-TKI treatment. Further top-QTc prolongation (453 ms vs. 438 ms, p < 0.001) and HR increase (88 bpm vs. 81 bpm, p < 0.001) occurred after treatment advanced. Notably, as HR elevated during treatment, top-QT interval paradoxically increased rather than decreased, and the top-QTc increased rather than slightly fluctuated. Moreover, such phenomena were more significant after treatment advanced. After adjusting for confounding factors, pericardial effusion and lower serum potassium levels were independent predictors of additional QTc prolongation during sequential third-generation EGFR-TKI treatment. Conclusion: First-generation EGFR-TKI could prolong top-QTc, and sequential third-generation EGFR-TKI induced further prolongation. Top-QT interval paradoxically increased and top-QTc significantly increased as HR elevated, which was more significant after sequential EGFR-TKI treatment. Pericardial effusion and lower serum potassium levels were independent predictors of additional QTc prolongation after sequential EGFR-TKI treatment.

19.
Adv Healthc Mater ; : e2304421, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780250

ABSTRACT

Developing of small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, we synthesized six polymethine cyanine molecules based on the structure of ICG by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, we obtained IC-1224 with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields. This article is protected by copyright. All rights reserved.

20.
J Hazard Mater ; 473: 134632, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38781852

ABSTRACT

Recent increases in organophosphate ester (OPE) application have led to their widespread presence, yet little is known about their temporal trends in food. This study collected milk samples from 13 countries across three continents during 2020-2023, finding detectable OPEs in all samples (range: 2.25-19.7; median: 7.06 ng/g ww). Although no statistical temporal differences were found for the total OPEs during the 4-year sampling campaign, it was interesting to observe significant variations in the decreasing trend for Cl-OPEs and concentration variations for aryl-OPEs and alkyl-OPEs (p < 0.05), indicating changing OPE use patterns. Packaged milk exhibited significant higher OPE levels than those found in directly collected raw unpackaged milk, and milk with longer shelf-life showed higher OPE levels, revealing packaging material as a contamination source. No significant geographical differences were observed in milk across countries (p > 0.05), but Shandong Province, a major OPE production site in China, showed relatively higher OPE concentrations. The Monte Carlo simulation of estimated daily intakes indicated no exposure risk from OPEs through milk consumption. The molecular docking method was used to assess human hormone binding affinity with OPEs, amongst which aryl-OPEs had the highest binding energies. The Toxicological-Priority-Index method which integrated chemical property, detection frequency, risk quotients, hazardous quotients and endocrine-disrupting effects was employed to prioritize OPEs. Aryl-OPEs showed the highest scores, deserving attention in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...