Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
BMC Pulm Med ; 24(1): 264, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824531

ABSTRACT

BACKGROUND: Smoking induces and modifies the airway immune response, accelerating the decline of asthmatics' lung function and severely affecting asthma symptoms' control level. To assess the prognosis of asthmatics who smoke and to provide reasonable recommendations for treatment, we constructed a nomogram prediction model. METHODS: General and clinical data were collected from April to September 2021 from smoking asthmatics aged ≥14 years attending the People's Hospital of Zhengzhou University. Patients were followed up regularly by telephone or outpatient visits, and their medication and follow-up visits were recorded during the 6-months follow-up visit, as well as their asthma control levels after 6 months (asthma control questionnaire-5, ACQ-5). The study employed R4.2.2 software to conduct univariate and multivariate logistic regression analyses to identify independent risk factors for 'poorly controlled asthma' (ACQ>0.75) as the outcome variable. Subsequently, a nomogram prediction model was constructed. Internal validation was used to test the reproducibility of the model. The model efficacy was evaluated using the consistency index (C-index), receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS: Invitations were sent to 231 asthmatics who smoked. A total of 202 participants responded, resulting in a final total of 190 participants included in the model development. The nomogram established five independent risk factors (P<0.05): FEV1%pred, smoking index (100), comorbidities situations, medication regimen, and good or poor medication adherence. The area under curve (AUC) of the modeling set was 0.824(95%CI 0.765-0.884), suggesting that the nomogram has a high ability to distinguish poor asthma control in smoking asthmatics after 6 months. The calibration curve showed a C-index of 0.824 for the modeling set and a C-index of 0.792 for the self-validation set formed by 1000 bootstrap sampling, which means that the prediction probability of the model was consistent with reality. Decision curve analysis (DCA) of the nomogram revealed that the net benefit was higher when the risk threshold probability for poor asthma control was 4.5 - 93.9%. CONCLUSIONS: FEV1%pred, smoking index (100), comorbidities situations, medication regimen, and medication adherence were identified as independent risk factors for poor asthma control after 6 months in smoking asthmatics. The nomogram established based on these findings can effectively predict relevant risk and provide clinicians with a reference to identify the poorly controlled population with smoking asthma as early as possible, and to select a better therapeutic regimen. Meanwhile, it can effectively improve the medication adherence and the degree of attention to complications in smoking asthma patients.


Subject(s)
Asthma , Nomograms , Smoking , Humans , Asthma/drug therapy , Asthma/physiopathology , Male , Female , Risk Factors , Adult , Middle Aged , Smoking/epidemiology , Smoking/adverse effects , ROC Curve , Logistic Models , China/epidemiology , Surveys and Questionnaires , Prognosis , Reproducibility of Results
2.
Acta Pharmacol Sin ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862818

ABSTRACT

Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.

5.
BMC Plant Biol ; 24(1): 259, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594635

ABSTRACT

BACKGROUND: Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS: A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION: The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.


Subject(s)
Chrysanthemum , Transcriptome , Hybrid Vigor/genetics , Chrysanthemum/genetics , Plant Breeding , Gene Expression Profiling/methods , Gene Expression Regulation, Plant
6.
Colloids Surf B Biointerfaces ; 238: 113909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599076

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.


Subject(s)
Biomimetic Materials , Cell Membrane , Doxorubicin , Nanoparticles , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Nanoparticles/chemistry , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/drug effects , Animals , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Dendrimers/chemistry , Mice , Cell Line, Tumor , Drug Delivery Systems , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Biomimetics , Particle Size
7.
Gen Comp Endocrinol ; 353: 114513, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38604437

ABSTRACT

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Subject(s)
Cachexia , Muscular Atrophy , Myostatin , Neoplasms , Sarcopenia , Signal Transduction , Transforming Growth Factor beta , Humans , Cachexia/metabolism , Cachexia/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction/physiology , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/pathology , Transforming Growth Factor beta/metabolism , Myostatin/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
8.
Diabetol Metab Syndr ; 16(1): 79, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566220

ABSTRACT

BACKGROUND: Stress hyperglycemia is a physiological response of the body under stress to make adaptive adjustments in response to changes in the internal environment. The stress hyperglycemia ratio (SHR) is a new indicator after adjusting the basal blood glucose level of the population. Previous studies have shown that SHR is associated with poor prognosis in many diseases, such as cardiovascular and cerebrovascular diseases and delirium in elderly patients. However, there are currently no studies on the correlation between SHR and the general U.S. POPULATION: The purpose of this study was to examine the association between SHR and adverse outcomes among adults in the United States in general. METHODS: Data on 13,315 follow-up cohorts were extracted from NHANES. The study population was divided into four groups according to quartiles of SHR. The primary outcomes were all-cause mortality and diabetes mellitus mortality. The relationship between SHR and outcomes was explored using restricted cubic splines, COX proportional hazards regression, Kaplan-Meier curves, and mediation effects. SHR is incorporated into eight machine learning algorithms to establish a prediction model and verify the prediction performance. RESULTS: A total of 13,315 individual data were included in this study. Restricted cubic splines demonstrated a "U-shaped" association between SHR and all-cause mortality and diabetes mellitus mortality, indicating that increasing SHR is associated with an increased risk of adverse events. Compared with lower SHR, higher SHR was significantly associated with an increased risk of all cause mortality and diabetes mellitus mortality (HR > 1, P < 0.05). The mediating effect results showed that the positively mediated variables were segmented neutrophils and aspartate aminotransferase, and the negatively mediated variables were hemoglobin, red blood cell count, albumin, and alanine aminotransferase. The ROC of the eight machine learning algorithm models are XGBoost (0.8688), DT (0.8512), KNN (0.7966), RF (0.8417), Logistic regression (0.8633), ENET (0.8626), SVM (0.8327) and MLP (0.8662). CONCLUSION: SHR can be used as a predictor of all cause mortality and diabetes mellitus mortality in the general adult population in the United States. Higher SHR is significantly associated with an increased risk of poor prognosis, especially in those aged < 65 years and in women.

9.
Sci Rep ; 14(1): 7209, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38532030

ABSTRACT

P. ginseng is a precious traditional Chinese functional food, which is used for both medicinal and food purposes, and has various effects such as immunomodulation, anti-tumor and anti-oxidation. The growth year of P. ginseng has an important impact on its medicinal and economic values. Fast and nondestructive identification of the growth year of P. ginseng is crucial for its quality evaluation. In this paper, we propose a FC-CNN network that incorporates spectral and spatial features of hyperspectral images to characterize P. ginseng from different growth years. The importance ranking of the spectra was obtained using the random forest method for optimal band selection. Based on the hyperspectral reflectance data of P. ginseng after radiometric calibration and the images of the best five VNIR bands and five SWIR bands selected, the year-by-year identification of P. ginseng age and its identification experiments for food and medicinal purposes were conducted, and the FC-CNN network and its FCNN and CNN branch networks were tested and compared in terms of their effectiveness in the identification of P. ginseng growth years. It has been experimentally verified that the best year-by-year recognition was achieved by utilizing images from five visible and near-infrared important bands and all spectral curves, and the recognition accuracy of food and medicinal use reached 100%. The FC-CNN network is significantly better than its branching model in the effect of edible and medicinal identification. The results show that for P. ginseng growth year identification, VNIR images have much more useful information than SWIR images. Meanwhile, the FC-CNN network utilizing the spectral and spatial features of hyperspectral images is an effective method for the identification of P. ginseng growth year.


Subject(s)
Panax , Calibration , Functional Food , Immunomodulation , Neural Networks, Computer
10.
Plant Cell Rep ; 43(4): 84, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448703

ABSTRACT

KEY MESSAGE: The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.


Subject(s)
Arabidopsis , Chrysanthemum , Genome-Wide Association Study , Plant Breeding , Reproduction , Chrysanthemum/genetics
11.
J Org Chem ; 89(7): 4840-4850, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38502550

ABSTRACT

Here, we report controlled and site-selective C-H alkenylation and dialkenylation of indolizines and pyrrolo[1,2-a]quinolines with ß-alkoxyvinyl trifluoromethylketones under simple and practical conditions. Moreover, this direct C-H alkenylation strategy can also be extended to imidazo[1,2-a]pyridines. Notably, without a transition metal and external oxidant, efficient dehydrogenative ß-alkenylation of tertiary amines with ß-alkoxyvinyl trifluoromethylketones is presented.

12.
Sci Rep ; 14(1): 6262, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491084

ABSTRACT

CD4+CD25+ regulatory T cells (Tregs) play an important role in maintaining immune homeostasis in multiple sclerosis (MS). Hence, we aimed to explore the therapeutic efficacy and safety of adoptive cell therapy (ACT) utilizing induced antigen-specific Tregs in an animal model of MS, that is, in an experimental autoimmune encephalomyelitis (EAE) model. B cells from EAE model that were activated with soluble CD40L were used as antigen-presenting cells (APCs) to induce the differentiation of antigen-specific Tregs from naïve CD4 precursors, and then, a stepwise isolation of CD4+CD25highCD127low Tregs was performed using a flow sorter. All EAE mice were divided into Treg-treated group (2 × 104 cells in 0.2 mL per mouse, n = 14) and sham-treated group (0.2 mL normal saline (NS), n = 20), which were observed daily for clinical assessment, and for abnormal appearance for 6 weeks. Afterward, histological analysis, immunofluorescence and real-time PCR were performed. Compared to sham-treated mice, Treg-treated mice exhibited a significant decrease in disease severity scores and reduced inflammatory infiltration and demyelination in the spinal cord. Additionally, Tregs-treated mice demonstrated higher CCN3 protein and mRNA levels than sham-treated mice. The results of this preclinical study further support the therapeutic potential of this ACT approach in the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , T-Lymphocytes, Regulatory , Spinal Cord/pathology , Antigen-Presenting Cells , Mice, Inbred C57BL
13.
Gen Comp Endocrinol ; 352: 114501, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38527592

ABSTRACT

Reproductive history is one of the strongest risk factors for breast cancer in women. Pregnancy can promote short-term breast cancer risk, but also reduce a woman's lifetime risk of breast cancer. Changes in hormone levels before and after pregnancy are one of the key factors in breast cancer risk. This article summarizes the changes in hormone levels before and after pregnancy, and the roles of hormones in mammary gland development and breast cancer progression. Other factors, such as changes in breast morphology and mammary gland differentiation, changes in the proportion of mammary stem cells (MaSCs), changes in the immune and inflammatory environment, and changes in lactation before and after pregnancy, also play key roles in the occurrence and development of breast cancer. This review discusses the dual effects and the potential mechanisms of pregnancy on breast cancer risk from the above aspects, which is helpful to understand the complexity of female breast cancer occurrence.


Subject(s)
Breast Neoplasms , Female , Humans , Pregnancy , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Cell Differentiation , Hormones , Lactation , Mammary Glands, Animal , Risk Factors
14.
Chem Biol Drug Des ; 103(3): e14508, 2024 03.
Article in English | MEDLINE | ID: mdl-38514749

ABSTRACT

Pulmonary Fibrosis (PF) is a fatal lung disease with complicated pathogenesis. Astragaloside IV (ASV) has been discovered to alleviate PF progression, and the potential molecular mechanism of ASV in the development of PF need to be further clarified. Bleomycin (BLM) was used to construct PF in vivo model. Expression levels of circ_0008898, miR-211-5p, high mobility group protein B1 (HMGB1), alpha smooth muscle Actin (α-SMA) and Collagen I were examined by Quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Cell survival was analyzed using Cell Counting Kit-8 (CCK-8) and EdU (5-ethynyl-2'-deoxyuridine) assay. The invasion abilities were investigated by transwell assay. The levels of inflammatory factors were tested via using Enzyme-linked immunosorbent assay (ELISA). The relationship between circ_0008898 or HMGB1 and miR-211-5p was identified by dual-luciferase reporter assay. The results showed that ASV attenuated BLM-induced pulmonary fibrosis in vivo. In vitro study, ASV alleviated TGF-ß1-induced fibrogenesis in HFL1 cells. Circ_0008898 was increased in TGF-ß1-induced HFL1 cells. ASV-induced impacts were abrogated by circ_0008898 overexpression in TGF-ß1-induced HFL1 cells. Mechanistically, circ_0008898 competitively bound to miR-211-5p to increase the expression of its target HMGB1. MiR-211-5p deficiency rescued ASV-mediated effects in TGF-ß1-induced HFL1 cells. In addition, HMGB1 overexpression partially overturned circ_0008898 interference-induced impacts in HFL1 cells upon TGF-ß1 treatment. In conclusion, our work manifested that ASV hindered PF process by mediating the circ_0008898/miR-211-5p/HMGB1 network.


Subject(s)
HMGB1 Protein , MicroRNAs , Pulmonary Fibrosis , Saponins , Triterpenes , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/genetics , Transforming Growth Factor beta1/genetics , HMGB1 Protein/genetics , MicroRNAs/genetics , Cell Proliferation
15.
Int Forum Allergy Rhinol ; 14(4): 845-849, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37624074

ABSTRACT

KEY POINTS: Nasal tight junction module score correlates negatively to allergy module score in COVID-19. Omicron variant may slow-down tight junction restoration in patients with AR.


Subject(s)
COVID-19 , Rhinitis, Allergic , Humans , Tight Junctions , Nasal Mucosa , SARS-CoV-2 , Rhinitis, Allergic/therapy
17.
Eur Arch Otorhinolaryngol ; 281(1): 267-272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37737873

ABSTRACT

PURPOSE: To evaluate the role of perioperative antibiotics use in children after adenotonsillectomy. METHODS: SPSS 27.0 was used for statistical analysis. Two independent samples mean T test was used to evaluate the throat pain scores consecutive 3 days after the surgery, the time to resume to normal diet, and the wound healing time. Logistic regression analysis was used to evaluate the independent risk factors of the two groups. The generalized estimation model was used to evaluate the correlation between age and postoperative pain scores, and the relationship between different tonsillar bed gradings and postoperative pain scores. RESULTS: The pain scores were 5.83 ± 1.879, 5.20 ± 1.933, and 4.02 ± 1.936 in the observation group; and 6.83 ± 1.892, 6.17 ± 2.001, and 5.29 ± 2.068 in the control group on days 1-3 after surgery, respectively. The time of pain disappearance was 6.24 ± 2.121 days in the observation group and 7.73 ± 2.210 days in the control group. The wound repair time was 18.66 ± 2.200 days in the observation group and 18.70 ± 2.468 days in the control group. Logistic regression analysis showed that fever was an independent risk factor for the two groups and was negatively correlated (B = - 1.237, P < 0.001, OR = 0.290). Generalized estimation model showed that there was a positive correlation between age and pain scores (P < 0.001), and with the increasing grading of tonsillar bed, the higher the pain scores was (P < 0.001). CONCLUSIONS: Perioperative use of antibiotics in children with adenotonsillectomy can effectively reduce postoperative fever, throat pain symptoms, and shorten the pain time. With the increasing of tonsillar bed grading, perioperative antibiotic therapy was more necessary.


Subject(s)
Tonsillectomy , Child , Humans , Tonsillectomy/adverse effects , Adenoidectomy/adverse effects , Anti-Bacterial Agents/therapeutic use , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Pain, Postoperative/diagnosis , Pharynx
19.
Aging Cell ; 23(3): e14063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38098220

ABSTRACT

Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.


Subject(s)
Heart Diseases , MicroRNAs , Mice , Humans , Animals , Aged , NAD/metabolism , Aging/genetics , Aging/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Cellular Senescence/genetics , Mice, Transgenic , Poly (ADP-Ribose) Polymerase-1/genetics
20.
Acta Pharm Sin B ; 13(12): 4906-4917, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045058

ABSTRACT

Following on our recently developed biphenyl-ATDP non-nucleoside reverse transcriptase inhibitor ZLM-66 (SI = 2019.80, S = 1.9 µg/mL), a series of novel heterocycle-substituted ATDP derivatives with significantly improved selectivity and solubility were identified by replacement of the biphenyl moiety of ZLM-66 with heterocyclic group with lower lipophilicity. Evidently, the representative analog 7w in this series exhibited dramatically enhanced selectivity and solubility (SI = 12,497.73, S = 4472 µg/mL) in comparison with ZLM-66 (SI = 2019.80, S = 1.9 µg/mL). This new NNRTI conferred low nanomolar inhibition of wild-type HIV-1 strain and tested mutant strains (K103N, L100I, Y181C, E138K, and K103N + Y181C). The analog also demonstrated favorable safety and pharmacokinetic profiles, as evidenced by its insensitivity to CYP and hERG, lack of mortality and pathological damage, and good oral bioavailability in rats (F = 27.1%). Further development of 7w for HIV therapy will be facilitated by this valuable information.

SELECTION OF CITATIONS
SEARCH DETAIL
...