Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
J Colloid Interface Sci ; 671: 145-153, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795535

ABSTRACT

Wood-derived carbon, with its strong tracheid array structure, is an ideal material for use as a self-supporting electrode in supercapacitors. By leveraging the inherent through pore structure and surface affinity found in wood tracheids, we successfully engineered a highly spatially efficient cube-templated porous carbon framework inside carbonized wood tracheid cavities through precise control over precursor crystallization temperatures. This innovative cubic channel architecture effectively maximizes up to (79 ± 1)% of the cavity volume in wood-derived carbon while demonstrating exceptional hydrophilicity and high conductivity properties, facilitating the development of supercapacitors with enhanced areal/volumetric capacitances (2.65F cm-2/53.0F cm-3 at 5.0 mA cm-2) as well as superior areal/volumetric energy densities (0.37 mWh cm-2/7.36 mWh cm-3 at 2.5 mW cm-2). The fabrication of these cube-templated channels with high cube filling content is not only simple and precisely controllable, but also environmentally friendly. The proposed method eliminates the conventional acid-base treatment process for pore formation, facilitating the rapid development and practical implementation of thick electrodes with superior performance in supercapacitors. Moreover, it offers a universal research approach for the commercialization of wood-derived thick electrodes.

3.
Sci Total Environ ; 933: 173238, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38750760

ABSTRACT

Nanoplastic pollution typically exhibits more biotoxicity to marine organisms than microplastic pollution. Limited research exists on the toxic effects of small-sized nanoplastics on marine fish, especially regarding their post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to small-sized polystyrene nanoplastics (30 nm, PS-NPs) for 7 days for the exposure experiments, followed by 14 days of recovery experiments. Histologically, hepatic lipid droplets and branchial epithelial liftings were the primary lesions induced by PS-NPs during both exposure and recovery periods. The inhibition of total superoxide dismutase activity and the accumulation of malondialdehyde content throughout the exposure and recovery periods. Transcriptional and metabolic regulation revealed that PS-NPs induced lipid metabolism disorders and DNA damage during the initial 1-2 days of exposure periods, followed by immune responses and neurotoxicity in the later stages (4-7 days). During the early recovery stages (2-7 days), lipid metabolism and cell cycle were activated, while in the later recovery stage (14 days), the emphasis shifted to lipid metabolism and energy metabolism. Persistent histological lesions, changes in antioxidant capacity, and fluctuations in gene and metabolite expression were observed even after 14 days of recovery periods, highlighting the severe biotoxicity of small-sized PS-NPs to marine fish. In summary, small-sized PS-NPs have severe biotoxicity, causing tissue lesions, oxidative damage, lipid metabolism disorders, DNA damage, immune responses, and neurotoxicity in red drum. This study offers valuable insights into the toxic effects and resilience of small-sized nanoplastics on marine fish.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Perciformes/physiology , Microplastics/toxicity , DNA Damage , Nanoparticles/toxicity , Lipid Metabolism/drug effects
4.
BMC Public Health ; 24(1): 1252, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741086

ABSTRACT

BACKGROUND: As the number of elderly migrants in China continues to grow, it is necessary to pay closer attention to their health and health services. Some studies have confirmed that social capital plays a significant role in the utilization of health services. Therefore, an in-depth exploration of the relationship between social capital and the utilization of essential public health services (EPHS) by elderly migrants will not only contribute to improving their overall health but also facilitate a more balanced development of public health service system in China. METHODS: Based on the cross-sectional data from the 2017 China Migrants Dynamic Survey (CMDS), this study examined the impact of social capital on the utilization of EPHS among elderly migrants. We evaluated social capital at two distinct levels: the individual and the community, and considered two dimensions of social capital: structural social capital (SSC) and cognitive social capital (CSC). The study aimed to delve into the impact of these forms of social capital on the utilization of EPHS among elderly migrants, and whether the migration range moderates this impact by multilevel logistic regression analysis. RESULTS: A total of 5,728 migrant elderly individuals were selected. The health records establishment rate and health education acceptance rate were approximately 33.0% and 58.6%, respectively. Social capital influenceed the utilization of EPHS among elderly migrants. Specifically, individual-level SSC and CSC have impacts on both the establishment of health records (OR = 1.598, 95%CI 1.366-1.869; OR = 1.705, 95%CI 1.433-2.028) and the acceptance of health education (OR = 1.345, 95%CI 1.154-1.567; OR = 2.297, 95%CI 1.906-2.768) among elderly migrants, while community-level SSC only affected the acceptance of health education (OR = 3.838, 95%CI 1.328-11.097). There were significant differences in individual-level SSC, health records, and health education among different migration range subgroups among elderly migrants. Migration range moderated the effect of social capital on the utilization of EPHS, crossing provinces could weaken the relationship between SSC and health education. CONCLUSIONS: Social capital is associated with a higher utilization rate of EPHS among elderly migrants. It is necessary to encourage them to actively participate in social activities, strengthen public services and infrastructure construction in the area, and improve their sense of belonging and identity.


Subject(s)
Social Capital , Transients and Migrants , Humans , China , Male , Aged , Female , Transients and Migrants/statistics & numerical data , Transients and Migrants/psychology , Cross-Sectional Studies , Middle Aged , Logistic Models , Surveys and Questionnaires , Patient Acceptance of Health Care/statistics & numerical data , Aged, 80 and over
5.
Heliyon ; 10(7): e28162, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596032

ABSTRACT

Brain metastasis (BMs) in small cell lung cancer (SCLC) has a very poor prognosis. This study combined WGCNA with the mfuzz algorithm to identify potential biomarkers in the peripheral blood of patients with BMs. By comparing the significantly differentially expressed genes present in BMs samples, we identified ADCY4 as a target for further study. Expression of ADCY4 was used to cluster mfuzz expression pattern, and 28 hub genes for functional enrichment. PPI network analysis were obtained by comparing with differentially expressed genes in BMs. GABRE, NFE4 and LMOD2 are highly expressed in patients with BMs and have a good diagnostic effect. Immunoinfiltration analysis showed that SCLC patients with BMs may be associated with memory B cells, Tregs, NK cell activation, macrophage M0 and dendritic cell activation. prophytic was used to investigate the ADCY4-mediated anti-tumor drug response. In conclusion, ADCY4 can be used as a promising candidate biomarker for predicting BMs, molecular and immune features in SCLC. PCR showed that ADCY4 expression was increased in NCI-H209 and NCI-H526 SCLC cell lines. In vitro experiments confirmed that the expression of ADCY4 was significantly decreased after anti-PD1 antibody treatment, while the expression of energy metabolism factors were significantly different. This study reveals a potential mechanism by which ADCY4 mediates poor prognosis through energy metabolism -related pathways in SCLC.

6.
Lab Invest ; 104(6): 102058, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626874

ABSTRACT

In clinical practice, programmed death ligand 1 (PD-L1) detection is prone to nonspecific staining due to the complex cellular composition of pleural effusion smears. In this study, diaminobenzidine (DAB) and 3-amino-9-ethylcarbazole (AEC) immunohistochemistry double staining was performed to investigate PD-L1 expression in tumor cells from malignant pleural effusion (MPE). MPE was considered as a metastasis in non-small cell lung cancer patients; thus, the heterogeneity between metastatic and primary lung cancer was revealed as well. Ninety paired specimens of MPE cell blocks and matched primary lung cancer tissues from non-small cell lung cancer patients were subjected to PD-L1 and thyroid transcription factor-1(TTF-1)/p63 immunohistochemistry double staining. Two experienced pathologists independently evaluated PD-L1 expression using 3 cutoffs (1%, 10%, and 50%). PD-L1 expression in MPE was strongly correlated with that in matched primary lung cancer tissues (R = 0.813; P < .001). Using a 4-tier scale (cutoffs: 1%, 10%, and 50%), the concordance was 71.1% (Cohen's κ = .534). Using a 2-tier scale, the concordance was 75.6% (1%, Cohen's κ = 0.53), 78.9% (10%, Cohen's κ = 0.574), and 95.6% (50%, Cohen's κ = 0.754). The rates of PD-L1 positivity in MPE (56.7%) were higher than that in lung tissues (32.2%). All 27 discordant cases had higher scores in MPE. The double-staining method provided superior identification of PD-L1-positive tumor cells on a background with nonspecific staining. In conclusion, PD-L1 expression was moderately concordant between metastatic MPE cell blocks and matched primary lung carcinoma tissues, with variability related to tumor heterogeneity. MPE should be considered to detect PD-L1 when histological specimens are unattainable, especially when PD-L1 expression is >50%. PD-L1 positivity rates were higher in MPE. Double staining can improve PD-L1 detection by reducing false-negative/positive results.

7.
Nat Commun ; 15(1): 2676, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538581

ABSTRACT

Autophagy modulates the degradation and recycling of intracellular materials and contributes to male gametophyte development and male fertility in plants. However, whether autophagy participates in seed development remains largely unknown. Here, we demonstrate that autophagy is crucial for timely programmed cell death (PCD) in the integumentary tapetum, the counterpart of anther tapetum, influencing embryo pattern formation and seed viability. Inhibition of autophagy resulted in delayed PCD of the integumentary tapetum and defects in embryo patterning. Cell-type-specific restoration of autophagic activities revealed that the integumentary tapetum plays a non-autonomous role in embryo patterning. Furthermore, high-throughput, comprehensive lipidomic analyzes uncovered an unexpected seed-developmental-stage-dependent role of autophagy in seed lipid metabolism: it contributes to triacylglycerol degradation before fertilization and to triacylglycerol biosynthesis after fertilization. This study highlights the critical role of autophagy in regulating timely integumentary tapetum PCD and reveals its significance in seed lipid metabolism and viability.


Subject(s)
Apoptosis , Pollen , Pollen/metabolism , Apoptosis/physiology , Skin , Autophagy/genetics , Triglycerides/metabolism , Gene Expression Regulation, Plant , Flowers
8.
J Cancer Res Ther ; 20(1): 9-16, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554292

ABSTRACT

Nonsmall cell lung cancer (NSCLC) predominantly affects the elderly since its incidence and mortality rates skyrocket beyond the age of 65. The landscape of NSCLC treatment has been revolutionized by immune checkpoint inhibitors (ICIs), which have emerged after a long and mostly inactive period of conventional treatment protocols. However, there is limited data on the exact effects of these chemicals on older patients, whose care can be complicated by a variety of conditions. This highlights the need to understand the efficacy of emerging cancer medicines in older patients. In this study, we will review the data of ICIs from clinical trials that were relevant to older people with NSCLC and poor performance status. We will also discuss the role of immunosenescence in immunotherapy and biomarkers in predicting the efficacy of ICIs in patients with advanced NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunosenescence , Lung Neoplasms , Humans , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Biomarkers , Immunotherapy/methods
9.
Ecotoxicol Environ Saf ; 273: 116175, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38458070

ABSTRACT

Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Humans , Antioxidants/metabolism , Microplastics/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Perciformes/genetics , Perciformes/metabolism , Oxidative Stress , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
10.
DNA Repair (Amst) ; 137: 103666, 2024 May.
Article in English | MEDLINE | ID: mdl-38492429

ABSTRACT

Mitochondrial DNA (mtDNA) plays a key role in mitochondrial and cellular functions. mtDNA is maintained by active DNA turnover and base excision repair (BER). In BER, one of the toxic repair intermediates is 5'-deoxyribose phosphate (5'dRp). Human mitochondrial DNA polymerase γ has weak dRp lyase activities, and another known dRp lyase in the nucleus, human DNA polymerase ß, can also localize to mitochondria in certain cell and tissue types. Nonetheless, whether additional proteins have the ability to remove 5'dRp in mitochondria remains unknown. Our prior work on the AP lyase activity of mitochondrial transcription factor A (TFAM) has prompted us to examine its ability to remove 5'dRp residues in vitro. TFAM is the primary DNA-packaging factor in human mitochondria and interacts with mitochondrial DNA extensively. Our data demonstrate that TFAM has the dRp lyase activity with different DNA substrates. Under single-turnover conditions, TFAM removes 5'dRp residues at a rate comparable to that of DNA polymerase (pol) ß, albeit slower than that of pol λ. Among the three proteins examined, pol λ shows the highest single-turnover rates in dRp lyase reactions. The catalytic effect of TFAM is facilitated by lysine residues of TFAM via Schiff base chemistry, as evidenced by the observation of dRp-lysine adducts in mass spectrometry experiments. The catalytic effect of TFAM observed here is analogous to the AP lyase activity of TFAM reported previously. Together, these results suggest a potential role of TFAM in preventing the accumulation of toxic DNA repair intermediates.


Subject(s)
DNA Polymerase beta , Lyases , Phosphorus-Oxygen Lyases , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Lyases/metabolism , Lysine , DNA Polymerase beta/metabolism , DNA Repair , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors , Mitochondrial Proteins/metabolism
11.
Synth Syst Biotechnol ; 9(1): 165-175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348398

ABSTRACT

The probiotic bacterium Escherichia coli Nissle 1917 (EcN) holds significant promise for use in clinical and biological industries. However, the reliance on antibiotics to maintain plasmid-borne genes has overshadowed its benefits. In this study, we addressed this issue by engineering the endogenous cryptic plasmids pMUT1 and pMUT2. The non-essential elements were removed to create more stable derivatives pMUT1NR△ and pMUT2HBC△. Synthetic promoters by integrating binding motifs on sigma factors were further constructed and applied for expression of Bacteroides thetaiotaomicron heparinase III and the biosynthesis of ectoine. Compared to traditional antibiotic-dependent expression systems, our newly constructed antibiotic-free expression systems offer considerable advantages for clinical and synthetic biology applications.

12.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396529

ABSTRACT

Cadmium (Cd) pollution has become a global issue due to industrial and agricultural developments. However, the molecular mechanism of Cd-induced detrimental effects and relevant signal transduction/metabolic networks are largely unknown in marine fishes. Here, greenfin horse-faced filefish (Thamnaconus septentrionalis) were exposed to 5.0 mg/L Cd up to 7 days. We applied both biochemical methods and multi-omics techniques to investigate how the gills respond to Cd exposure. Our findings revealed that Cd exposure caused the formation of reactive oxygen species (ROS), which in turn activated the MAPK and apoptotic pathways to alleviate oxidative stress and cell damage. Glycolysis, protein degradation, as well as fatty acid metabolism might assist to meet the requirements of nutrition and energy under Cd stress. We also found that long-term (7 days, "long-term" means compared to 12 and 48 h) Cd exposure caused the accumulation of succinate, which would in turn trigger an inflammatory response and start an immunological process. Moreover, ferroptosis might induce inflammation. Overall, Cd exposure caused oxidative stress, energy metabolism disturbance, and immune response in greenfin horse-faced filefish. Our conclusions can be used as references for safety risk assessment of Cd to marine economic fishes.

13.
Adv Sci (Weinh) ; 11(12): e2301164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229144

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is a conserved serine/threonine kinase that integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activation requires tethering to lysosomes by the Ragulator-Rag complex. However, the dynamic regulation of the interaction between Ragulator and Rag guanosine triphosphatase (GTPase) remains unclear. In this study, that LAMTOR1, an essential component of Ragulator, is dynamically ubiquitinated depending on amino acid abundance is reported. It is found that the E3 ligase TRAF4 directly interacts with LAMTOR1 and catalyzes the K63-linked polyubiquitination of LAMTOR1 at K151. Ubiquitination of LAMTOR1 by TRAF4 promoted its binding to Rag GTPases and enhanced mTORC1 activation, K151R knock-in or TRAF4 knock-out blocks amino acid-induced mTORC1 activation and accelerates the development of inflammation-induced colon cancer. This study revealed that TRAF4-mediated LAMTOR1 ubiquitination is a regulatory mechanism for mTORC1 activation and provides a therapeutic target for diseases involving mTORC1 dysregulation.


Subject(s)
Colorectal Neoplasms , Monomeric GTP-Binding Proteins , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , TNF Receptor-Associated Factor 4/metabolism , Ubiquitination , Amino Acids/metabolism
14.
Diagn Cytopathol ; 52(5): 235-242, 2024 May.
Article in English | MEDLINE | ID: mdl-38263766

ABSTRACT

BACKGROUND: Programmed death-ligand 1 (PD-L1) expression levels measured by immunohistochemistry have been proven to predict the outcome of immunotherapy in lung adenocarcinoma (LUAD). However, data on PD-L1 expression on liquid-based cytology (LBC) in malignant pleural effusion (MPE) is scarce. METHODS: This study cohort included 60 cases with MPE suffering from LUAD. PD-L1 SP263 assay was used for immunocytochemistry (ICC) on LBC and matched cell block (CB) to validate ICC protocols on LBC slides. Clinical outcomes were analyzed based on immunotherapy and PD-L1 tumor proportion scores (TPS) on LBC slides and CBs. RESULTS: PD-L1 expression with TPS ≥1% was lower in LBCs than in CBs (33 of 60 [55.0%] vs. 35 of 60 [58.3%]; p = .687). Even with the TPS ≥50% threshold, PD-L1 expression was lower in LBCs (10 of 60 [16.7%] vs. 15 of 60 [25%]; p = .125). Epidermal growth factor receptor (EGFR) exon 20 mutation, tumor cell proportion, and pleural fluid neutrophil-to-lymphocyte ratio were related to PD-L1 expression on CBs (p = .013, p = 0.022, and p = .011), respectively. Patients with subsequent immune checkpoint inhibitor therapy remained a better prognostic in subgroups of PD-L1 positive expression on LBC slides (TPS ≥1%, p = .041). CONCLUSIONS: LBC specimens had comparable performance to CBs in PD-L1 assessment and predicting treatment response to PD-L1-defined therapy.


Subject(s)
Adenocarcinoma of Lung , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pleural Effusion , Humans , Adenocarcinoma of Lung/diagnosis , B7-H1 Antigen/chemistry , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Cytology , Lung Neoplasms/chemistry , Lung Neoplasms/pathology , Prognosis
15.
J Inflamm Res ; 17: 81-90, 2024.
Article in English | MEDLINE | ID: mdl-38204988

ABSTRACT

Objective: Whether the combination of high-sensitivity C-reactive protein (hs-CRP) and Lipoprotein-associated Phospholipase A2 (Lp-PLA2) was an independent risk factor for metabolic unhealthy is unknown. This study aimed to evaluate the association between combining hs-CRP and Lp-PLA2 and metabolic unhealthy. Methods: A total of 3198 participants who underwent routine health check-up examinations. The participants completed inflammation indicators (hs-CRP and Lp-PLA2) examination and physical assessments. Four phenotypes were determined according to obesity and metabolic health status. Meanwhile, the participants were divided into four groups according to the level of hs-CRP and Lp-PLA2. The cross-sectional association between hs-CRP, Lp-PLA2 and metabolic unhealthy was tested by logistic regression analysis. Results: About 30.48%, 17.35%, 17.32% and 34.83% had MHNO, MUNO, MHO, and MUO, respectively. The combination of the hs-CRP and Lp-PLA2 levels was significantly correlated with metabolic unhealthy in non-obese subjects. However, in obese subjects, only hs-CRP level was significantly correlated with metabolic unhealthy. Conclusion: The hs-CRP and Lp-PLA2 together were significantly associated with metabolic unhealthy in non-obese subjects. hs-CRP level was significantly correlated with metabolic unhealthy in obese subjects.

16.
Sleep Med ; 114: 167-177, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211375

ABSTRACT

STUDY OBJECTIVES: Coronavirus disease 2019 (COVID-19) can lead to insomnia. However, associations between COVID-19-caused insomnia and white matter (WM) changes are unclear. METHODS: All subjects had ever been infected with COVID-19. We investigated 89 insomniacs (29 chronic insomniacs, 33 new-onset insomniacs, 27 aggravated insomniacs) and 44 matched non-insomnia participants. Neurite orientation dispersion and density imaging (NODDI) was performed to identify micro-structural alterations of WM, and twelve scales related to sleeping status, memory, attention, learning, emotional status, and executive functions were used. Then, correlations between insomnia/cognitive-behavioral functions and diffusion metrics were tested. To eliminate influence of pre-COVID-19 factors on insomnia, causal relationships between COVID-19 and WM changes were validated by Mendelian randomization (MR) analysis. The significant brain regions of COVID-19-caused insomnia were intersected results of tract-based spatial statistics (TBSS) and MR analyses. RESULTS: Compared to non-insomnia group, insomnia group and its subgroups including post-COVID-19 aggravated or unchanged chronic insomnia group had higher orientation dispersion index (ODI) in extensive brain regions. The left superior longitudinal fasciculus (SLF), left posterior thalamic radiation (PTR), and left cingulate gyrus (CG) were specific brain regions in COVID-19-induced insomnia aggravation. After Bonferroni correction, partial correlation analyses within insomnia group showed that ODI in left SLF was positively correlated with Pittsburgh sleep quality index (PSQI), insomnia severity index (ISI), and self-rating anxiety scale (SAS) scores; ODI in the left PTR was positively correlated with PSQI and ISI scores. CONCLUSIONS: This study is a continuation of our previous research, which provided potential biomarkers for COVID-19-induced insomnia.


Subject(s)
COVID-19 , Sleep Initiation and Maintenance Disorders , White Matter , Humans , White Matter/diagnostic imaging , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Sleep Initiation and Maintenance Disorders/epidemiology , Pandemics , Mendelian Randomization Analysis , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Neuroimaging
17.
Integr Zool ; 19(2): 307-318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37231996

ABSTRACT

Understanding the habitat shifting pattern is a prerequisite for implementing in situ conservation of migratory species. Spotted seals (Phoca largha) inhabiting the Yellow Sea ecoregion (YSE) comprise a small population with independent genes and represent a charismatic flagship species in this region. However, this population has declined by 80% since the 1940s, and increased support from the countries around the YSE is urgently needed to address the potential local extinction risk. A time-series niche model and life-history weighted systematic conservation planning were designed on the basis of a satellite beacon tracking survey (2010-2020) of the YSE population. The results showed clustering and spreading shifting patterns during the breeding and migratory seasons, respectively. The closed-loop migration route formed in the YSE indicated that this population might be geographically isolated from populations in other breeding areas around the world. The conservation priority area (CPA), with an area of 19 632 km2 (3.58% of the total YSE area), was the most effective response to the potential in situ risk. However, nearly 80% of the CPA was exposed outside the existing marine protected areas (MPAs). Future establishment of MPAs in China should strategically consider the conservation gap identified herein, and it is recommended for Korea's closed fishing season to be spatially set in the western Korean Peninsula from May to August. This study also exemplified that the lack of temporal information would lead to the dislocation of niche modeling for migratory species represented by spotted seals. Attention should be paid to protecting small and migratory populations in marine biodiversity conservation planning.


Subject(s)
Phoca , Animals , Biodiversity , China , Cluster Analysis , Seasons
18.
Phytomedicine ; 123: 155229, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006804

ABSTRACT

BACKGROUND: Triphala (TLP), as a Chinese Tibetan medicine composing of Emblica officinalis, Terminalia chebula and Terminalia bellirica (1.2:1.5:1), exhibited hepatoprotective, hypolipidemic and gut microbiota modulatory effects. Nonetheless, its roles in prevention of high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and the related mechanistic insights involving the interplay of gut microbiota and hepatic inflammation are not known. PURPOSE: The present study seeks to determine if TLP would prevent HFD-induced NAFLD in vivo and its underlying mechanisms from the perspectives of gut microbiota, metabolites, and hepatic inflammation. METHODS: TLP was subjected to extraction and chemo-profiling, and in vivo evaluation in HFD-fed rats on hepatic lipid and inflammation, intestinal microbiota, short-chain fatty acids (SCFAs) and permeability, and body weight and fat content profiles. RESULTS: The TLP was primarily constituted of gallic acid, corilagin and chebulagic acid. Orally administered HFD-fed rats with TLP were characterized by the growth of Ligilactobacillus and Akkermansia, and SCFAs (acetic/propionic/butyric acid) secretion which led to increased claudin-1 and zonula occludens-1 expression that reduced the mucosal permeability to migration of lipopolysaccharides (LPS) into blood and liver. Coupling with hepatic cholesterol and triglyceride lowering actions, the TLP mitigated both inflammatory (ALT, AST, IL-1ß, IL-6 and TNF-α) and pro-inflammatory (TLR4, MYD88 and NF-κB P65) activities of liver, and sequel to histopathological development of NAFLD in a dose-dependent fashion. CONCLUSION: TLP is promisingly an effective therapy to prevent NAFLD through modulating gut microbiota, mucosal permeability and SCFAs secretion with liver fat and inflammatory responses.


Subject(s)
Non-alcoholic Fatty Liver Disease , Plant Extracts , Rats , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Medicine, Tibetan Traditional , Liver , Inflammation/metabolism , Diet, High-Fat/adverse effects , China , Mice, Inbred C57BL
19.
Biomed Pharmacother ; 170: 116051, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154275

ABSTRACT

Diabetes mellitus is a widespread metabolic disorder with increasing incidence worldwide, posing a considerable threat to human health because of its complications. Therefore, cost-effective antidiabetic drugs with minimal side effects are urgently needed. Dioscin, a naturally occurring compound, helps to reduce the complications of diabetes mellitus by regulating glucose and lipid metabolism, protecting islet ß cells, improving insulin resistance, and inhibiting oxidative stress and inflammatory response. Plant-derived dioscin reduces the risk of toxicity and side effects associated with chemically synthesized drugs. It is a promising option for treating diabetes mellitus because of its preventive and therapeutic effects, which may be attributed to a variety of underlying mechanisms. However, data compiled by current studies are preliminary. Information about the molecular mechanism of dioscin remains limited, and no high-quality human experiments and clinical trials for testing its safety and efficacy have been conducted. As a resource for research in this area, this review is expected to provide a systematic framework for the application of dioscin in the treatment of diabetes mellitus and its complications.


Subject(s)
Diabetes Mellitus, Type 2 , Diosgenin , Islets of Langerhans , Humans , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/adverse effects , Diosgenin/adverse effects
20.
Chin Herb Med ; 15(4): 509-515, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38094015

ABSTRACT

The most common subtype of lung cancer is non-small cell lung cancer (NSCLC), which has a poor prognosis and seriously threatens the health of human beings. The multidisciplinary comprehensive treatment model has gradually become the mainstream of NSCLC treatment. Traditional Chinese medicine (TCM) can be used effectively either as an adjunctive therapy or alone throughout the NSCLC therapy, which has a significant impact on survival, quality of life, and reduction of toxicity. Therefore, this paper reviewed the theoretical basis, the latest clinical application, and combined treatment mechanisms in order to explore the advantage stage of TCM treatment and the synergistic therapeutic mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...