Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.015
Filter
1.
Sci Rep ; 14(1): 12640, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825596

ABSTRACT

The paper presents a fault region identification method for the active distribution network (ADN) with limited PMU. First, PMU configuration and region division strategies are proposed based on the network topology. Next, the difference in three-phase current variations between the normal and fault regions of the ADN is analyzed. A multi-dimensional state monitoring matrix is built using the measured current data. The spectral norm ratio coefficient is constructed based on the 2-norm to lower the complexity of the multi-dimensional state monitoring matrix and quantify the difference in state changes before and after the fault occurs in each region. Then, the fault region is identified by combining each region's spectral norm ratio coefficient and the change of the current phase. Finally, an IEEE 33-node simulation model is created to simulate faults under different working conditions. According to the simulation results, the suggested approach is less impacted by fault type, neutral point grounding mode, and transition resistance. Furthermore, even if the communication does not match the rigorous synchronization requirements, the proposed method can still complete the fault identification of the distribution network correctly and has high robustness.

2.
Nat Sci Sleep ; 16: 625-638, 2024.
Article in English | MEDLINE | ID: mdl-38831958

ABSTRACT

Purpose: Catathrenia is a rare sleeping disorder characterized by repetitive nocturnal groaning during prolonged expirations. Patients with catathrenia had heterogeneous polysomnographic, comorbidity, craniofacial characteristics, and responses to treatment. Identifying phenotypes of catathrenia might benefit the exploration of etiology and personalized therapy. Patients and Methods: Sixty-six patients diagnosed with catathrenia by full-night audio/video polysomnography seeking treatment with mandibular advancement devices (MAD) or continuous positive airway pressure (CPAP) were included in the cohort. Polysomnographic characteristics including sleep architecture, respiratory, groaning, and arousal events were analyzed. Three-dimensional (3D) and 2D craniofacial hard tissue and upper airway structures were evaluated with cone-beam computed tomography and lateral cephalometry. Phenotypes of catathrenia were identified by K-mean cluster analysis, and inter-group comparisons were assessed. Results: Two distinct clusters of catathrenia were identified: cluster 1 (n=17) was characterized to have more males (71%), a longer average duration of groaning events (18.5±4.8 and 12.8±5.7s, p=0.005), and broader upper airway (volume 41,386±10,543 and 26,661±6700 mm3, p<0.001); cluster 2 (n=49) was characterized to have more females (73%), higher respiratory disturbance index (RDI) (median 1.0 [0.3, 2.0] and 5.2 [1.2, 13.3]/h, p=0.009), more respiratory effort-related arousals (RERA)(1 [1, 109] and 32 [13, 57)], p=0.005), smaller upper airway (cross-sectional area of velopharynx 512±87 and 339±84 mm2, p<0.001) and better response to treatment (41.2% and 82.6%, p=0.004). Conclusion: Two distinct phenotypes were identified in patients with catathrenia, primary catathrenia, and catathrenia associated with upper airway obstruction, suggesting respiratory events and upper airway structures might be related to the etiology of catathrenia, with implications for its treatment.

4.
Spine J ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754736

ABSTRACT

BACKGROUND CONTEXT: Cage subsidence is a common complication after lumbar interbody fusion surgery, with low bone mineral density (BMD) being a significant risk factor. ໿Endplate bone quality (EBQ) obtained from clinical MRI scans has been deemed reliable in determining regional BMD. However, the association between EBQ score and cage subsidence following oblique lumbar interbody fusion (OLIF) has not been clearly established. PURPOSE: This study aims to assess the relationship between EBQ score and cage subsidence in patients who underwent single-level OLIF. STUDY DESIGN/SETTING: A retrospective study. PATIENT SAMPLE: The study included adults with degenerative spinal conditions who underwent single-level OLIF at our institution OUTCOME MEASURES: Cage subsidence, disc height, EBQ score, fusion rate. METHODS: This retrospective study analyzed data from patients who underwent single-level OLIF surgery at our institution between October 2017 and August 2022. Postoperative CT scans were used to measure cage subsidence, while the EBQ score was calculated using preoperative non-contrast T1-weighted MRI. To determine the predictive ability of the EBQ score, receiver operating characteristic (ROC) curve analysis was conducted. Additionally, univariable and multivariable logistic regression analyses were performed. RESULTS: In this study, a total of 88 patients were included and followed up for an average of 15.8 months. It was observed that 32.9% (n=29/88) of the patients experienced cage subsidence. The post-surgery disc height was significantly higher in patients who experienced subsidence compared to those who did not. The mean EBQ scores for patients with non-subsidence and subsidence were 2.31±0.6 and 3.48±1.2, respectively, and this difference was statistically significant. The ROC curve analysis showed that the AUC for the EBQ score was 0.811 (95% CI: 0.717-0.905). The most suitable threshold for the EBQ score was determined to be 2.318 (sensitivity: 93.1%, specificity: 55.9%). Additionally, the multivariate logistic regression analysis revealed a significant association between a higher EBQ score and an increased risk of subsidence (odds ratio [OR]=6.204, 95% CI=2.520-15.272, p<.001). CONSLUSIONS: Our findings indicate that higher preoperative EBQ scores are significantly linked to cage subsidence following single-level OLIF. Preoperative measurement of MRI can serve as a valuable tool in predicting cage subsidence.

5.
Neurotherapeutics ; : e00377, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777742

ABSTRACT

Chronic pain is a prevalent and persistent ailment that affects individuals worldwide. Conventional medications employed in the treatment of chronic pain typically demonstrate limited analgesic effectiveness and frequently give rise to debilitating side effects, such as tolerance and addiction, thereby diminishing patient compliance with medication. Consequently, there is an urgent need for the development of efficacious novel analgesics and innovative methodologies to address chronic pain. Recently, a growing body of evidence has suggested that multireceptor ligands targeting opioid receptors (ORs) are favorable for improving analgesic efficacy, decreasing the risk of adverse effects, and occasionally yielding additional advantages. In this study, the intrathecal injection of a recently developed peptide (VYWEMEDKN) at nanomolar concentrations decreased pain sensitivity in naïve mice and effectively reduced pain-related behaviors in nociceptive pain model mice with minimal opioid-related side effects. Importantly, the compound exerted significant rapid-acting antidepressant effects in both the forced swim test and tail suspension test. It is possible that the rapid antihyperalgesic and antidepressant effects of the peptide are mediated through the OR pathway. Overall, this peptide could both effectively provide pain relief and alleviate depression with fewer side effects, suggesting that it is a potential agent for chronic pain and depression comorbidities from the perspective of pharmaceutical development.

6.
Mol Hortic ; 4(1): 23, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807235

ABSTRACT

Michelia alba DC is a highly valuable ornamental plant of the Magnoliaceae family. This evergreen tropical tree commonly grows in Southeast Asia and is adored for its delightful fragrance. Our study assembled the M. alba haplotype genome MC and MM by utilizing Nanopore ultralong reads, Pacbio Hifi long reads and parental second-generation data. Moreover, the first methylation map of Magnoliaceae was constructed based on the methylation site data obtained using Nanopore data. Metabolomic datasets were generated from the flowers of three different species to assess variations in pigment and volatile compound accumulation. Finally, transcriptome data were generated to link genomic, methylation, and morphological patterns to reveal the reasons underlying the differences between M. alba and its parental lines in petal color, flower shape, and fragrance. We found that the AP1 and AP2 genes are crucial in M. alba petal formation, while the 4CL, PAL, and C4H genes control petal color. The data generated in this study serve as a foundation for future physiological and biochemical research on M. alba, facilitate the targeted improvement of M. alba varieties, and offer a theoretical basis for molecular research on Michelia L.

7.
Chin J Cancer Res ; 36(2): 226-232, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38751434

ABSTRACT

Colorectal cancer has a high incidence and mortality rate in China, with the majority of cases being middle and low rectal cancer. Surgical intervention is currently the main treatment modality for locally advanced rectal cancer, with the common goal of improving oncological outcomes while preserving function. The controversy regarding the circumferential resection margin distance in rectal cancer surgery has been resolved. With the promotion of neoadjuvant therapy concepts and advancements in technology, treatment strategies have become more diverse. Following tumor downstaging, there is an increasing trend towards extending the safe distance of distal rectal margin. This provides more opportunities for patients with low rectal cancer to preserve their anal function. However, there is currently no consensus on the specific distance of distal resection margin.

8.
Exp Physiol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812118

ABSTRACT

Diabetic nephropathy (DN) is a common complication of diabetes mellitus (DM), and cell death plays an important role. Ferroptosis is a recently discovered type of iron-dependent cell death and one that is different from other kinds of cell death including apoptosis and necrosis. However, ferroptosis has not been described in the context of DN. This study explored the role of ferroptosis in DN pathophysiology and aimed to confirm the efficacy of the ferroptosis inhibitor SRS 16-86 on DN. Streptozotocin injection was used to establish the DM and DN animal models. To investigate the presence or occurrence of ferroptosis in DN, we assessed the concentrations of iron, reactive oxygen species and specific markers associated with ferroptosis in a rat model of DN. Additionally, we performed haematoxylin-eosin staining, blood biochemistry, urine biochemistry and kidney function analysis to evaluate the efficacy of the ferroptosis inhibitor SRS 16-86 in ameliorating DN. We found that SRS 16-86 could improve the recovery of renal function after DN by upregulating glutathione peroxidase 4, glutathione and system xc -light chain and by downregulating the lipid peroxidation markers and 4-hydroxynonenal. SRS 16-86 treatment could improve renal organization after DN. The inflammatory cytokines interleukin 1ß and tumour necrosis factor α and intercellular adhesion molecule 1 were significantly decreased following SRS 16-86 treatment after DN. The results indicate that there is a strong connection between ferroptosis and the pathological mechanism of DN. The efficacy of the ferroptosis inhibitor SRS 16-86 in DN repair supports its use as a new therapeutic treatment for DN.

9.
Phys Rev Lett ; 132(19): 191901, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804936

ABSTRACT

We present the first lattice QCD calculation of the universal axial γW-box contribution □_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon four-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at □_{γW}^{VA}=3.65(7)_{lat}(1)_{PT}×10^{-3}. Consequently, this yields a slightly higher value of |V_{ud}|=0.973 86(11)_{exp}(9)_{RC}(27)_{NS}, reducing the previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box contribution to the axial charge g_{A}, denoted as □_{γW}^{VV}, and explore its potential implications.

10.
Adv Mater ; : e2400870, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38615262

ABSTRACT

Advanced phosphate removal is critical for alleviating the serious and widespread aquatic eutrophication, strongly depending on the development of superior adsorption materials to overcome low chemical affinity and sluggish mass transfer at low phosphate concentrations. Herein, the first synthesis of monodispersed and organic amine modified lanthanum hydroxide nanocrystals (OA-La(OH)3) for advanced phosphate removal by modulating inner Helmholtz plane (IHP), is reported. These OA-La(OH)3 nanocrystals with positively charged surfaces and abundant exposed La sites exhibit specific affinity toward phosphate, delivering a maximum adsorption capacity of 168 mg P g⁻1 and a wide pH adaptability from 3.0 to 11.0, as well as a robust anti-interference performance, far surpassing those of documented phosphate removal materials. The superior phosphate removal performance of OA-La(OH)3 is attributed to its protonated organic amine in IHP, which enhances the electrostatic attraction around the adsorbent-solution interface. Impressively, OA-La(OH)3 can treat ≈5 000 and ≈3 200 bed volumes of simulated and real phosphate-containing wastewater to below extremely strict standard (0.1 mg L⁻1) in a fixed-bed adsorption mode, exhibiting great potential for advanced phosphate removal. This study offers a facile modification strategy to improve phosphate removal performance of nanoscale adsorbents, and sheds light on the structure-reactivity relationship of La-based materials.

11.
bioRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38645066

ABSTRACT

The treatment landscape for opioid use disorder (OUD) faces challenges stemming from the limited efficacy of existing medications, poor adherence to prescribed regimens, and a heightened risk of fatal overdose post-treatment cessation. Therefore, there is a pressing need for innovative therapeutic strategies that enhance the effectiveness of interventions and the overall well-being of individuals with OUD. This study explored the therapeutic potential of nor-Levo-α-acetylmethadol (nor-LAAM) to treat OUD. We developed sustained release nor-LAAM-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles (MP) using a hydrophobic ion pairing (HIP) approach. The nor-LAAM-MP prepared using HIP with pamoic acid had high drug loading and exhibited minimal initial burst release and sustained release. The nor-LAAM-MP was further optimized for desirable particle size, drug loading, and release kinetics. The lead nor-LAAM-MP (F4) had a relatively high drug loading (11 wt.%) and an average diameter (19 µm) and maintained a sustained drug release for 4 weeks. A single subcutaneous injection of nor-LAAM-MP (F4) provided detectable nor-LAAM levels in rabbit plasma for at least 15 days. We further evaluated the therapeutic efficacy of nor-LAAM-MP (F4) in a well-established fentanyl-addiction rat model, and revealed a marked reduction in fentanyl choice and withdrawal symptoms in fentanyl-dependent rats. These findings provide insights into further developing long-acting nor-LAAM-MP for treating OUD. It has the potential to offer a new effective medication to the existing sparse armamentarium of products available to treat OUD.

12.
Sci Total Environ ; 929: 172477, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38621544

ABSTRACT

To study thermal behaviour during spontaneous combustion of an open-pit coal mine, mixed slag (coal, oil shale, and coal gangue) was taken as the research object. Laser thermal conductivity analyser and differential scanning calorimetry were used to test thermophysical parameters and heat release characteristics of the minerals. The parameters can be employed to calculate the apparent activation energy using the Arrhenius equation and evaluate the thermal behaviour of open-pit mixed slag. The results indicate that thermophysical parameters have stage characteristics. Thermal diffusivity and thermal conductivity of minerals, especially mixed slag, have a strong correlation with temperature. Heat flow of minerals exhibits five characteristic stages, and heat flow of the samples is consistent with the change in heating rate. During the heating process, thermal diffusivity and heat flow of the mixed slag are between those of a single mineral. Except for the mixed slag at 15 and 20 °C/min, the initial exothermic temperature of the other samples is mainly concentrated at 50-80 °C. Thermal energy release of the sample is mainly concentrated in the accelerated exothermic stage and rapid exothermic stage. Thermal energy release of mixed slag in rapid exothermic stage is always greater than that in accelerated exothermic stage, and the proportion of thermal energy release in these two stages exceeds 98 %. The apparent activation energy during the accelerated exothermic stage is lower, making it easier to release heat, and rapid exothermic stage is relatively high, which can readily lead to heat accumulation. Thermal analysis reveals that the thermal behaviour of mixed slag is significantly different from that of a single mineral. Its unique exothermic characteristics can provide a more accurate theoretical basis for the prevention and control of environmental pollution caused by slag spontaneous combustion.

13.
Chemphyschem ; : e202400151, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635959

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) imply the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles, commonly referred to as soot particles in combustion systems and interstellar grains in deep space. Whereas gas phase formation pathways to the simplest PAH - naphthalene (C10H8) - are beginning to emerge, reaction pathways leading to the synthesis of the 14π Hückel aromatic PAHs anthracene and phenanthrene (C14H10) are still incomplete. Here, by utilizing a chemical microreactor in conjunction with vacuum ultraviolet (VUV) photoionization (PI) of the products followed by detection of the ions in a reflectron time-of-flight mass spectrometer (ReTOF-MS), the reaction between the 1'- and 2'-methylnaphthyl radicals (C11H9⋅) with the propargyl radical (C3H3⋅) accesses anthracene (C14H10) and phenanthrene (C14H10) via the Propargyl Addition-BenzAnnulation (PABA) mechanism in conjunction with a hydrogen assisted isomerization. The preferential formation of the thermodynamically less stable anthracene isomer compared to phenanthrene suggests a kinetic, rather than a thermodynamics control of the reaction.

14.
Analyst ; 149(10): 2826-2832, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38591153

ABSTRACT

The diffusion dynamics of small molecules into polymer entities is crucial for driving their morphology and function, which can be applied to research fields such as optical identification, medical implantation and intelligent sensing platforms. Herein, we demonstrate a nondestructive bright-field imaging strategy to monitor and control the morphology of polymer microspheres by varying the interfacial interaction and diffusion in a penetrant bath. The nanoscale interface movement of single polymer microspheres was tracked and converted into the diameter variation during the swelling event with sub-pixel accuracy, which is consistent with the calculation using Li-Tanaka's kinetic equations. More interestingly, the solvent diffusion dynamics along different directions of one particle are heterogeneous, indicating the non-uniform internal structure of a soft confined assembly. The swelling characteristics of single polymer microspheres can be quantified by this simple imaging strategy, and the transient intermediate swelling states are captured. To model the lifetime and stabilization times of microplastic entities, solvent selectivity and thermodynamic regulation were introduced to obtain the activation energy down to the single micro-entity level. This optical methodology shows capability for decoding the complex diffusion mechanism in polymer entities and provides guidance for the design of drug delivery systems, sensor platforms, and optical responsive materials.

15.
Exp Eye Res ; 243: 109902, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641196

ABSTRACT

Nitrogen mustard (NM) is a potent vesicating chemical warfare agent that is primarily absorbed through skin, inhalation, or ocular surface. Ocular exposure of NM can cause acute to chronic keratopathy which can eventually lead to blindness. There is a current lack of effective countermeasures against ocular exposure of NM despite their imperative need. Herein, we aim to explore the sustained effect of Dexamethasone sodium phosphate (DSP)-loaded polymeric nanoparticles (PLGA-DSP-NP) following a single subconjunctival injection in the management and prevention of corneal injury progression upon exposure to NM. DSP is an FDA approved corticosteroid with proven anti-inflammatory properties. We formulated PLGA-DSP-NP with zinc chelation ion bridging method using PLGA polymer, with particles of approximately 250 nm and a drug loading of 6.5 wt%. Under in vitro sink conditions, PLGA-DSP-NP exhibited a sustained drug release for two weeks. Notably, in NM injured cornea, a single subconjunctival (SCT) injection of PLGA-DSP-NP outperformed DSP eyedrops (0.1%), DSP solution, placebo NP, and saline, significantly mitigating corneal neovascularization, ulceration, and opacity for the two weeks study period. Through PLGA-DSP-NP injection, sustained DSP release hindered inflammatory cytokine recruitment, angiogenic factors, and endothelial cell proliferation in the cornea. This strategy presents a promising localized corticosteroid delivery system to effectively combat NM-induced corneal injury, offering insights into managing vesicant exposure.


Subject(s)
Dexamethasone , Mechlorethamine , Nanoparticles , Dexamethasone/analogs & derivatives , Animals , Mechlorethamine/toxicity , Disease Models, Animal , Corneal Injuries/prevention & control , Corneal Injuries/chemically induced , Corneal Injuries/pathology , Corneal Injuries/drug therapy , Glucocorticoids , Chemical Warfare Agents/toxicity , Mice , Burns, Chemical/prevention & control , Burns, Chemical/drug therapy , Eye Burns/chemically induced , Eye Burns/prevention & control , Rabbits , Cornea/drug effects , Cornea/pathology , Cornea/metabolism
16.
J Hazard Mater ; 470: 134172, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569340

ABSTRACT

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Subject(s)
Boehmeria , Cadmium , Cell Wall , Vacuoles , Cadmium/toxicity , Cadmium/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Boehmeria/metabolism , Boehmeria/drug effects , Vacuoles/metabolism , Vacuoles/drug effects , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Polysaccharides/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant/drug effects , Glucans/metabolism , Xylans/metabolism , Stress, Physiological/drug effects
17.
Nat Commun ; 15(1): 2392, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493166

ABSTRACT

Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.


Subject(s)
Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Photosystem I Protein Complex/metabolism , Light-Harvesting Protein Complexes/metabolism , Ecosystem , Cryoelectron Microscopy , Photosynthesis
18.
Angew Chem Int Ed Engl ; 63(19): e202401386, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38488840

ABSTRACT

Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.

19.
Heliyon ; 10(6): e27690, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533037

ABSTRACT

Background: Previous studies have revealed dexmedetomidine have potential protective effects on vital organs by inhibiting the release of inflammatory cytokines. To investigate the effects of dexmedetomidine on sepsis, especially in the initial inflammatory stage of sepsis. RAW264.7 cells were used as the cell model in this study to elucidate the underlying mechanisms. Methods: In this study, we conducted several assays to investigate the mechanisms of dexmedetomidine and HOTAIR in sepsis. Cell viability was assessed using the CCK-8 kit, while inflammation responses were measured using ELISA for IL-1ß, IL-6, and TNF-α. Additionally, we employed qPCR, MeRIP, and RIP to further explore the underlying mechanisms. Results: Our findings indicate that dexmedetomidine treatment enhanced cell viability and reduced the production of inflammatory cytokines in LPS-treated RAW264.7 cells. Furthermore, we observed that the expression of HOTAIR was increased in LPS-treated RAW264.7 cells, which was then decreased upon dexmedetomidine pre-treatment. Further investigation demonstrated that HOTAIR could counteract the beneficial effects of dexmedetomidine on cell viability and cytokine production. Interestingly, we discovered that YTHDF1 targeted HOTAIR and was upregulated in LPS-treated RAW264.7 cells, but reduced in dexmedetomidine treatment. We also found that YTHDF1 increased HOTAIR and HOTAIR m6A levels. Conclusions: Collectively, our results suggest that dexmedetomidine downregulates HOTAIR and YTHDF1 expression, which in turn inhibits the biological behavior of LPS-treated RAW264.7 cells. This finding has potential implications for the prevention and treatment of sepsis-induced kidney injury.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124101, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38447440

ABSTRACT

Fluorescent chemosensors are often preferred for tracking toxic ions because of their non-destructive measurement and ease of use in environmental real samples and biosystems. Exploring high selectivity, great sensitivity, and biocompatible fluorophores with facile, accessible and dual-responsive features is currently highly demanding. A coumarin-based naphthol hydrazone Schiff base chemosensor, NaChro, is designed and synthesized in a two-step process to detect toxic metal ions with strong emission. Fluorescence spectra analysis demonstrates that the probe binds to Hg2+ and Pb2+ ions with a 1:1 and a 2:1 stoichiometry, respectively, with high sensitivity, short response time and minimal interference from other metal ions. The observed reversible turn-on reaction was attributed to the inhibition of C = N isomerization and excited-state intramolecular proton transfer (ESIPT) processes once the ions were introduced. The practical applications of NaChro are successfully addressed in paper strips, various water samples, HeLa cells and Zebrafish, demonstrating that the probe can detect and track Hg2+ and Pb2+ ions in environmental samples and biosystems.


Subject(s)
Lead , Mercury , Humans , Animals , Schiff Bases , HeLa Cells , Zebrafish , Mercury/analysis , Ions , Coumarins , Fluorescent Dyes
SELECTION OF CITATIONS
SEARCH DETAIL
...