Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2301645, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607956

ABSTRACT

Bimetallic phosphides are considered as promising electrocatalysts for zinc-air batteries toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). To address the semi-conductor inherent low electronic conductivity and catalytic activity, a polymetal-chelated strategy is employed to in situ fabricate bimetallic nanophosphides within carbon matrix anchoring by chemical bonding. The employment of biomolecule polydopamine (PDA) efficiently anchors various transition metal ions due to its strong chelating capability via inherent functional groups. Furthermore, the chelation of multi-metal ion is proved to promote the formation of graphitic nitrogen. The bimetallic FexCoyP phosphides nanoparticles are intimately encapsulated in carbon matrix through in situ carbonization and phosphatization processes. When utilized in Zinc-air batteries, Fe0.20Co0.80P anchored within N, P co-doped sub-microsphere (Fe0.20Co0.80P /PNC) exhibit a maximum power density of 167 mW cm-2 and cycle life up to 270 cycles, with a round-trip voltage of 0.955 V. The mechanisms for catalytic activity passivation are ascribed to the etching of nitrogen and oxidation of phosphorus in carbon matrix, as well as the oxidation of the surface phosphide on the sub-microspheres. This study presents a promising candidate for advancing the further development of energy conversation catalysis.

2.
Adv Sci (Weinh) ; 11(15): e2308979, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345238

ABSTRACT

Ammonia, a vital component in the synthesis of fertilizers, plastics, and explosives, is traditionally produced via the energy-intensive and environmentally detrimental Haber-Bosch process. Given its considerable energy consumption and significant greenhouse gas emissions, there is a growing shift toward electrocatalytic ammonia synthesis as an eco-friendly alternative. However, developing efficient electrocatalysts capable of achieving high selectivity, Faraday efficiency, and yield under ambient conditions remains a significant challenge. This review delves into the decades-long research into electrocatalytic ammonia synthesis, highlighting the evolution of fundamental principles, theoretical descriptors, and reaction mechanisms. An in-depth analysis of the nitrogen reduction reaction (NRR) and nitrate reduction reaction (NitRR) is provided, with a focus on their electrocatalysts. Additionally, the theories behind electrocatalyst design for ammonia synthesis are examined, including the Gibbs free energy approach, Sabatier principle, d-band center theory, and orbital spin states. The review culminates in a comprehensive overview of the current challenges and prospective future directions in electrocatalyst development for NRR and NitRR, paving the way for more sustainable methods of ammonia production.

SELECTION OF CITATIONS
SEARCH DETAIL
...