Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(14): 3874-3877, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008730

ABSTRACT

A nonlinear Tomlinson-Harashima precoding (NTHP) scheme has been verified for its capability to effectively address both the linear and nonlinear inter-symbol interferences (ISIs) arising in the intensity-modulation direct-detection (IM-DD) fiber optics transmission. Nevertheless, the application of the NTHP scheme may significantly increase the number of levels for the intensity modulated signals, resulting in the reduction of both eye width and receiver sensitivity. Here, we propose a fractionally spaced NTHP with a weight clustering (FS-NTHP-WC) scheme. Consequently, an accurate ISI feedback can be obtained to enlarge the eye width; meanwhile a hardware-efficient implementation without the equalization penalty can be achieved by weight clustering and pruning. When the C-band 100 Gbaud/λ PAM-4 signals are transmitted, our proposed FS-NTHP-WC scheme not only can achieve 0.25 dB and 0.5 dB gains of receiver sensitivity under back-to-back (B2B) and 2-km standard single-mode fiber (SSMF) transmission conditions, respectively, but can also cut down the computational complexity by 90% and 76% in terms of the number of multiplications and additions, respectively, in comparison with the NTHP scheme.

2.
J Am Chem Soc ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038211

ABSTRACT

Surface modification could enhance the cell internalization efficiency of nanovehicles for targeted gene or drug delivery. However, the influence of surface modification parameters, including recognition manners, valences, and patterns, is often clouded, especially for the endocytosis of DNA nanostructures in customized shapes. Focusing on an icosahedral DNA framework, we systematically programmed three distinct types of ligands with diverse valence and spatial distribution on their outer surface to study the internalization efficiency, endocytic pathways, and postinternalization fate. The comparison in different aspects of parameters deepens our understanding of the intricate relationship between surface modification and cell entry behavior, offering insights crucial for designing and optimizing DNA framework nanostructures for potent cell-targeted purposes.

3.
Opt Lett ; 49(11): 3166-3169, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824354

ABSTRACT

To monitor the health of the fiber network and its ambient environment in densely populated access/metro network areas, in this Letter, an endogenous distributed acoustic sensing (DAS) has been proposed and achieved in a coherent digital subcarrier multiplexing (DSCM) system. Rather than specially allocating a sensing probe in general integrated communication and sensing schemes, the fractional Fourier transformed (FrFT) training sequence (TS) designated for time/frequency synchronization in DSCM coherent communications has been repurposed for sensing. While achieving excellent synchronization performance of communication, the FrFT-based TS can also be concurrently utilized to perform distributed vibration sensing. Experimental results demonstrate that the FrFT-based timing/frequency synchronization sequence is repurposed to achieve a DAS sensitivity of 70 p ε/Hz at a spatial resolution of 5 m, along with 100-Gb/s 16 quadrature amplitude modulation (QAM) DSCM transmission, without a loss of spectral efficiency.

4.
J Hazard Mater ; 465: 133528, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237437

ABSTRACT

Cadmium (Cd) is a heavy metal and a toxic substance. Soil Cd pollution has emerged as a significant environmental issue that jeopardizes both the safety of agricultural products and human health. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) has been identified as a crucial factor in Cd stress and a series of defence mechanisms. However, the mechanism through which PRL1 mediates its downstream signalling has remained poorly understood. Here, we discovered a prl1-2 suppressor (sup8) for prl1-2 that complemented the defective development phenotype of prl1-2 under Cd stress. Gene cloning revealed a mutation in the C2H2 transcription factor ZAT17 as the basis for the sup8 phenotype. Genetic and biochemical studies indicated that ZAT17 acts as a negative regulator of Cd tolerance. Transcriptome analysis revealed that ZAT17 influences the alternative splicing (AS) process of multiple Cd-responsive genes by interacting with members of the MAC splicing complex, including PRL1 and CDC5. In conclusion, the identification of the novel gene ZAT17 enriches the understanding of the Cd stress response pathway and provides a valuable candidate locus for breeding Cd-resistant plant varieties.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cadmium/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant
5.
Appl Opt ; 62(30): 8091-8097, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38038104

ABSTRACT

Polarization properties of a soliton generated in a fiber laser of zero dispersion are investigated. Similar to the solitons generated in a fiber laser of all anomalous dispersion, the polarization ellipse of the soliton rotated during pulse evolution inside the cavity. The number of rotations relies on the cavity averaged birefringence with nonlinear bias. The larger the cavity averaged birefringence is, the bigger the bias is. When the period multiplying of solitons appears, the number of rotations depends on both multiplying periods and the cavity averaged birefringence. Multiple polarization states can be observed at a fixed position in the cavity depending on the multiplying period. When the cavity length is equal to n times of the averaged beat length, the polarization ellipse of the soliton rotates n∗m times at a fixed position, where m is equal to the multiplying period.

6.
Opt Express ; 31(20): 32114-32125, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859021

ABSTRACT

Enabling communication networks with sensing functionality has attracted significant interest lately. The digital subcarrier multiplexing (DSCM) technology is widely promoted in short-reach scenarios for its inherent flexibility of fine-tuning the spectrum. Its compatibility with large-scale as-deployed coherent architectures makes it particularly suited for cost-sensitive integrated sensing and communication applications. In this paper, we propose a scheme of spectrally integrating the digital linear frequency modulated sensing signal into DSCM signals to achieve simultaneous sensing and communication through shared transmitter. Consequently, this cost-effective scheme has been demonstrated to achieve 100-Gb/s dual-polarization quadrature phase-shift keying (DP-QPSK) and 200-Gb/s dual-polarization 16-ary quadrature amplitude modulation (DP-16QAM) transmission with a distributed acoustic sensing sensitivity of 69 pε/Hz and 88 pε/Hz respectively, at a spatial resolution of 4 m.

7.
Opt Express ; 31(13): 21452-21463, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381244

ABSTRACT

We investigate the polarization dynamics of vector solitons in a fiber laser mode-locked by a saturable absorber (SA). Three types of vector solitons were obtained in the laser, including group velocity locked vector solitons (GVLVS), polarization locked vector solitons (PLVS), and polarization rotation locked vector solitons (PRLVS). Their polarization evolution during intracavity propagation is discussed. Pure vector solitons are obtained from the continuous wave (CW) background by soliton distillation, and the characteristics of the vector solitons without and with distillation are analyzed, respectively. Numerical simulations suggest that the features of vector solitons in a fiber laser could be assemble to those generated in fibers.

8.
Medicine (Baltimore) ; 102(17): e33098, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37115091

ABSTRACT

Primary malignant lymphoma of the parotid gland is a rare entity. The disease is often misdiagnosed, and its survival factors remain unclear. This study included patients diagnosed with primary B-cell non-Hodgkin lymphoma of the parotid gland from 1987 to 2016 in the surveillance, epidemiology, and end results program. Univariate survival analysis was conducted using the Kaplan-Meier method, and multivariate analysis was performed using the Cox proportional hazards regression model. A competing risks regression model was applied to estimate the specific risks associated with parotid lymphoma mortality. A total of 1443 patients were identified. The overall survival of indolent primary B-cell lymphoma of the parotid gland was higher than that of aggressive lymphoma (hazard ratio 0.53, 95% confidence interval 0.44-0.64, P < .001), and older patients (≥70 years) exhibited inferior overall survival. Histological subtype and age are important prognostic factors in patients with primary B-cell non-Hodgkin lymphoma of the parotid gland.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Parotid Neoplasms , Humans , Lymphoma/epidemiology , Parotid Gland , Parotid Neoplasms/epidemiology , SEER Program , Lymphoma, B-Cell/epidemiology , Prognosis
9.
Opt Express ; 31(5): 7554-7563, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859884

ABSTRACT

Phase evolution of soliton and that of first-order sidebands in a fiber laser are investigated by using nonlinear Fourier transform (NFT). Development from dip-type sidebands to peak-type (Kelly) sidebands is presented. The phase relationship between the soliton and the sidebands calculated by the NFT are in good agreement with the average soliton theory. Our results suggest that NFT can be an effective tool for the analysis of laser pulses.

10.
Light Sci Appl ; 12(1): 38, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36746912

ABSTRACT

Soliton molecules (SMs) are stable bound states between solitons. SMs in fiber lasers are intensively investigated and embody analogies with matter molecules. Recent experimental studies on SMs formed by bright solitons, including soliton-pair, soliton-triplet or even soliton-quartet molecules, are intensive. However, study on soliton-binding states between bright and dark solitons is limited. In this work, the formation of such novel SMs in a fiber laser with near-zero group velocity dispersion (ZGVD) is reported. Physically, these SMs are formed because of the incoherent cross-phase modulation of light and constitute a new form of SMs that are conceptually analog to the multi-atom molecules in chemistry. Our research results could assist the understanding of the dynamics of large SM complexes. These findings may also motivate potential applications in large-capacity transmission and all-optical information storage.

11.
Nat Immunol ; 24(2): 225-238, 2023 02.
Article in English | MEDLINE | ID: mdl-36624165

ABSTRACT

Skin is exposed to various environmental assaults and undergoes morphological changes immediately after birth. Proper localization and function of immune cells in the skin is crucial for protection and establishment of skin tissue homeostasis. Here we report the discovery of a developmentally programmed process that directs preferential localization of invariant natural killer T (iNKT) cells to the skin for early local homeostatic regulation. We show that iNKT cells are programmed predominantly with a CCR10+ skin-homing phenotype during thymic development in infant and young mice. Early skin localization of iNKT cells is critical for proper commensal bacterial colonization and tissue development. Mechanistically, skin iNKT cells provide a local source of transferrin that regulates iron metabolism in hair follicle progenitor cells and helps hair follicle development. These findings provide molecular insights into the establishment and physiological functions of iNKT cells in the skin during early life.


Subject(s)
Natural Killer T-Cells , Mice , Animals , Skin , Homeostasis , Mice, Inbred C57BL , Mice, Knockout
12.
Adv Healthc Mater ; 12(1): e2201856, 2023 01.
Article in English | MEDLINE | ID: mdl-36226990

ABSTRACT

Conductive scaffolds are of great value for constructing functional myocardial tissues and promoting tissue reconstruction in the treatment of myocardial infarction (MI). Here, a novel scaffold composed of silk fibroin and polypyrrole (SP50) with a typical sponge-like porous structure and electrical conductivity similar to the native myocardium is developed. An electroactive engineered cardiac patch (SP50 ECP) with a certain thickness is constructed by applying electrical stimulation (ES) to the cardiomyocytes (CMs) on the scaffold. SP50 ECP can significantly express cardiac marker protein (α-actinin, Cx-43, and cTnT) and has better contractility and electrical coupling performance. Following in vivo transplantation, SP50 ECP shows a notable therapeutic effect in repairing infarcted myocardium. Not only can SP50 ECP effectively improves left ventricular remodeling and restore cardiac functions, such as ejection function (EF), but more importantly, improves the propagation of electrical pulses and promote the synchronous contraction of CMs in the scar area with normal myocardium, effectively reducing the susceptibility of MI rats to arrhythmias. In conclusion, this study demonstrates a facile approach to constructing electroactive ECPs based on porous conductive scaffolds and proves the therapeutic effects of ECPs in repairing the infarcted heart, which may represent a promising strategy for MI treatment.


Subject(s)
Myocardial Infarction , Polymers , Rats , Animals , Polymers/chemistry , Pyrroles/chemistry , Myocardial Infarction/therapy , Myocardium , Myocytes, Cardiac , Electric Conductivity , Tissue Scaffolds/chemistry
14.
Bioengineering (Basel) ; 9(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421085

ABSTRACT

With the incidence of harmful algal blooms (HABs) increasing in recent years, the urgent demand for the detection of domoic acid (DA), an amnesic shellfish toxin mainly produced by red tide algae Pseudonitzschia, has aroused increasing attention. Aptamers, a new molecular recognition element, provide clarity in the monitoring of DA. In this study, aptamers of DA were successfully screened by Capture-SELEX. Through identification and truncation optimization, aptamer C1-d with a high affinity (KD value, 109 nM) and high specificity for DA was obtained. The binding mechanism between DA and the aptamer was explored by molecular docking and molecular dynamics (MD) simulation, revealing the critical sites for DA-aptamer interaction. Meanwhile, a BLI-based aptasensor was constructed by C1-d, which displayed a linear range from 0.625 to 10 µM and a LOD of 13.7 nM. This aptasensor exhibited high specificity, good precision and repeatability, and high recovery rates for real samples; the process of detection could be completed in 7 min. This study is the first to identify and investigate the binding mechanism of DA-aptamer interaction and constructed a BLI-based aptasensor for DA, which lays a theoretical foundation for the detection and prevention of DA.

15.
Opt Express ; 30(18): 32381-32390, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242301

ABSTRACT

Nonlinear Fourier transform (NFT) is a powerful tool for characterizing optical soliton dynamics, which, however, suffers from fundamental limitations that ultra-wide bandwidth photodetectors and ultra-high sampling rate analog-to-digital converters should be used when accessing the full-field information of an ultrafast optical pulse. Herein, we report on the experimental demonstration of the linear optical sampling (LOS) enabled nonlinear frequency spectrum classification of ultrashort optical pulses, which could break this limitation. Instead of traditional coherent detection, the LOS overcomes the ultra-wide bandwidth constraint of commercially available optoelectrical devices. By finely adjusting the repetition rate difference between the soliton to be characterized and the sampling pulsed source, a 55.56-TSa/s equivalent sampling rate arising in the LOS can be secured, where only 400-MHz balanced photodetectors and 5-GSa/s analog-to-digital converter are used. Meanwhile, according to the nonlinear frequency spectrum calculated from the accurate full-field information, the promising concept of soliton distillation has been experimentally verified for the first time. The LOS-enabled NFT technique provides an alternative and efficient characterization tool for ultrafast fiber lasers, which facilities comprehensive insight into soliton dynamics.

16.
Opt Express ; 30(19): 35041-35049, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242505

ABSTRACT

Transition from a gain-guided soliton (GGS) to a fully developed noise-like pulse (NLP) is numerically demonstrated in fiber lasers operated in the normal dispersion regime, which explains well the experimental observation of spectrum evolution that the bottom of the averaged spectrum gradually broadens with pump power increasing. Numerical results suggest that the transition could also happen under the condition of cavity linear phase delay bias change with fixed pump power. It is demonstrated that the peak power clamping effect and the normal dispersion are the key factors leading to the spectrum evolution. In addition, intermittent meta-stable states between GGS and NLP can be obtained when the cavity dispersion is chosen at small normal dispersion.

17.
Toxins (Basel) ; 14(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36287974

ABSTRACT

Conotoxins (CTXs) are a variety of mixed polypeptide toxins, among which α-conotoxin MI (CTX-MI) is the most toxic. Serious toxic symptoms, a lack of counteracting drugs, and cumbersome detection processes have made CTX-MI a hidden danger for humans. One of the obstacles to resolving this problem is the absence of specific recognition elements. Aptamers have shown great advantages in the fields of molecule detection, drug development, etc. In this study, we screened and characterized aptamers for CTX-MI through a programmed process. MBMI-01c, the isolated aptamer, showed great affinity, with an affinity constant (KD) of 0.524 µM, and it formed an antiparallel G-quadruplet (GQ) structure for the specific recognition of CTX-MI. Additionally, an aptasensor based on the biolayer interferometry (BLI) platform was developed and displayed high precision, specificity, and repeatability with a limit of detection (LOD) of 0.26 µM. This aptasensor provides a potential tool for the rapid detection of CTX-MI in 10 min. The aptamer can be further developed for the enrichment, detoxification, and biological studies of CTX-MI. Additionally, the programmed process is applicable to screening and characterizing aptamers for other CTXs.


Subject(s)
Aptamers, Nucleotide , Conotoxins , Humans , SELEX Aptamer Technique , Aptamers, Nucleotide/chemistry , Limit of Detection
18.
Opt Express ; 30(9): 15416-15427, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473261

ABSTRACT

The performance of high baud-rate intensity modulation direct detection (IM-DD) transmissions is severely degraded by both the linear and nonlinear inter-symbol interference (ISI). Here, we propose and experimentally demonstrate a transmitter-side look-up-table pre-distortion combined with nonlinear Tomlinson-Harashima pre-coding (LUT_PD-NTHP) scheme with the capability of mitigating the linear and nonlinear ISI simultaneously, enabling a C-band 200 Gbit/s/λ PAM-4 transmission over 2-km standard single mode fiber (SSMF), under an end-to-end 10-dB bandwidth of about 20 GHz. The proposed LUT_PD-NTHP scheme is experimentally verified to be superior to the LUT pre-distortion combined with linear THP (LUT_PD-LTHP) scheme, in terms of both the receiver sensitivity and the LUT storage requirement, when only the feed-forward equalization (FFE) is used at the receiver-side. In particular, after the 200 Gbit/s PAM-4 signal transmission over the 2-km SSMF without the chromatic dispersion (CD) compensation, the proposed LUT_PD-NTHP scheme with a LUT pattern length of 3 possesses not only 0.25 dB improvement of the receiver sensitivity but also about 99% LUT pattern reduction, in comparison with the LUT_PD-LTHP scheme with a LUT pattern length of 5.

19.
Opt Lett ; 47(5): 1029-1032, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230282

ABSTRACT

Using numerical simulation, we have investigated the generation of color solitons consisting of two radiation fragments with different carrier frequencies in a dual-wavelength laser. The proposed mechanism for the formation of such solitons involves nonlinear losses that increase with increasing intensity, the dispersion of the refractive index, spectral gain inhomogeneity, and the generation of a doublet radiation spectrum, owing to the corresponding spectral-dependent losses in the laser. The proposed theory explains the main features of the experimentally observed formation of color domains in fiber lasers and has the potential for further development of methods for controlling the nonlinear dynamics of laser radiation.

20.
Toxins (Basel) ; 14(3)2022 03 05.
Article in English | MEDLINE | ID: mdl-35324692

ABSTRACT

Gymnodimines (GYMs), belonging to cyclic imines (CIs), are characterized as fast-acting toxins, and may pose potential risks to human health and the aquaculture industry through the contamination of sea food. The existing detection methods of GYMs have certain defects in practice, such as ethical problems or the requirement of complicated equipment. As novel molecular recognition elements, aptamers have been applied in many areas, including the detection of marine biotoxins. However, GYMs are liposoluble molecules with low molecular weight and limited numbers of chemical groups, which are considered as "challenging" targets for aptamers selection. In this study, Capture-SELEX was used as the main strategy in screening aptamers targeting gymnodimine-A (GYM-A), and an aptamer named G48nop, with the highest KD value of 95.30 nM, was successfully obtained by screening and optimization. G48nop showed high specificity towards GYM-A. Based on this, a novel aptasensor based on biolayer interferometry (BLI) technology was established in detecting GYM-A. This aptasensor showed a detection range from 55 to 1400 nM (linear range from 55 to 875 nM) and a limit of detection (LOD) of 6.21 nM. Spiking experiments in real samples indicated the recovery rate of this aptasensor, ranging from 96.65% to 109.67%. This is the first study to report an aptamer with high affinity and specificity for the challenging marine biotoxin GYM-A, and the new established aptasensor may be used as a reliable and efficient tool for the detection and monitoring of GYMs in the future.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Heterocyclic Compounds, 3-Ring , Humans , Hydrocarbons, Cyclic , Imines , Marine Toxins , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...