Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ecotoxicol Environ Saf ; 271: 115962, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237394

ABSTRACT

High-precision mapping based on portable X-ray fluorescence (PXRF) data is currently being studied extensively; however, owing to poor correlation with soil metal concentration, the original PXRF data directly used for co-kriging interpolation (CKI) cannot accurately map contaminated sites with heterogeneous concentrations. Therefore, this study selected a landfill-contaminated site for research, explored the best correlation mode between PXRF variants and actual heavy metal concentration, analyzed the impact of improving the correlation model on the CKI of the spatial distribution of heavy metals, and explored the most appropriate CKI mode and point density. The results showed the following: (1) After nonlinear transformation, the correlation model between PXRF and the actual concentration was significantly improved, and the correlation coefficients of five heavy metals increased from 0.214-0.232 to 0.936-0.986. (2) The introduction of corrected PXRF data significantly improves the accuracy of CKI. Compared with the original PXRF co-kriging interpolation (OP-CKI), the ME of the corrected PXRF co-kriging interpolation (CP-CKI) for Zn, Pb, and Cu decreased by 78.2 %, 45.5 %, and 65.3 %, respectively. In terms of the spatial distribution of heavy metal pollutant concentrations, CP-CKI effectively improved the influence of local anomalous high-value points on the interpolation accuracy. (3) When the sample density measured by inductively coupled plasma mass spectrometry (ICP-MS) was less than 4 boreholes/hm2, CKI accuracy decreased significantly, indicating that the sample density should not be less than a certain threshold during CKI. (4) When the sample density measured by PXRF exceeded 7 boreholes/hm2, the mean error and root mean square error of CKI continued to decrease, suggesting that the introduction of enough sample density measured by PXRF can effectively improve the accuracy of CKI.


Subject(s)
Metals, Heavy , Soil Pollutants , X-Rays , Spectrometry, X-Ray Emission/methods , Soil Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Spatial Analysis , Soil/chemistry
2.
Adv Sci (Weinh) ; 10(10): e2205289, 2023 04.
Article in English | MEDLINE | ID: mdl-36683149

ABSTRACT

Though gut microbiome disturbance may be involved in the etiology of gestational diabetes mellitus (GDM), data on the gut microbiome's dynamic change during pregnancy and associations with gestational glucose metabolism are still inadequate. In this prospective study comprising 120 pairs of GDM patients and matched pregnant controls, a decrease in the diversity of gut microbial species and changes in the microbial community composition with advancing gestation are found in controls, while no such trends are observed in GDM patients. Multivariable analysis identifies 10 GDM-related species (e.g., Alistipes putredinis), and the integrated associations of these species with glycemic traits are modified by habitual intake of fiber-rich plant foods. In addition, the microbial metabolic potentials related to fiber fermentation (e.g., mannan degradation pathways) and their key enzymes consistently emerge as associated with both GDM status and glycemic traits. Microbial features especially those involved in fiber fermentation, provide an incremental predictive value in a prediction model with established risk factors of GDM. These data suggest that the gut microbiome remodeling with advancing gestation is different in GDM patients compared with controls, and dietary fiber fermentation contributes to the influence of gut microbiome on gestational glycemic regulation.


Subject(s)
Diabetes, Gestational , Gastrointestinal Microbiome , Pregnancy , Female , Humans , Prospective Studies , Case-Control Studies , Glucose
3.
BMC Med ; 20(1): 414, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307799

ABSTRACT

BACKGROUND: Circulating levels of amino acids were associated with blood pressure (BP) in observational studies. However, the causation of such associations has been hypothesized but is difficult to prove in human studies. Here, we aimed to use two-sample Mendelian randomization analyses to evaluate the potential causal associations of circulating levels of amino acids with BP and risk of hypertension. METHODS: We generated genetic instruments for circulating levels of nine amino acids by conducting meta-analyses of genome-wide association study (GWAS) in UK Biobank participants with metabolomic data (n = 98,317) and another published metabolomics GWAS (n = 24,925). Data on the associations of the genetic variants with BP and hypertension were obtained in the UK Biobank participants without metabolomic data (n = 286,390). The causal effects were estimated using inverse-variance weighted method. RESULTS: Significant evidence consistently supported the causal effects of increased branched-chain amino acids (BCAAs, i.e., leucine, isoleucine, and valine) levels on higher BP and risk of hypertension (all P < 0.006 after Bonferroni correction except for Pleucine-on-diastolicBP = 0.008). For example, per standard deviation higher of genetically predicted isoleucine levels were associated with 2.71 ± 0.78 mmHg higher systolic BP and 1.24 ± 0.34 mmHg higher diastolic BP, as well as with 7% higher risk of hypertension (odds ratio: 1.07, [95% CI: 1.04-1.10]). In addition, per standard deviation higher of genetically predicted glycine level was associated with lower systolic BP (- 0.70 ± 0.17 mmHg, P = 4.04 × 10-5) and a lower risk of hypertension (0.99 [0.98-0.99], P = 6.46 × 10-5). In the reverse direction, genetically predicted higher systolic BP was associated with lower circulating levels of glycine (- 0.025±0.008, P = 0.001). CONCLUSIONS: This study provides evidence for causal impacts of genetically predicted circulating BCAAs and glycine levels on BP. Meanwhile, genetically predicted higher BP was associated with lower glycine levels. Further investigations are warranted to clarify the underlying mechanisms.


Subject(s)
Hypertension , Mendelian Randomization Analysis , Humans , Blood Pressure/genetics , Genome-Wide Association Study , Amino Acids/genetics , Leucine/genetics , Isoleucine , Hypertension/epidemiology , Hypertension/genetics , Glycine/genetics , Polymorphism, Single Nucleotide
4.
Nutr Metab (Lond) ; 19(1): 45, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35821143

ABSTRACT

BACKGROUND: The associations between visceral adipose tissue (VAT) and bone mineral density (BMD) or fracture have been controversial and the causality of the associations remains to be assessed. This study aimed to explore the associations of VAT^ (predicted value of VAT mass) with BMD and fracture risk in men and women, and to examine their potential causation by two-sample Mendelian randomization (MR) analyses. METHODS: UK Biobank is a large, population-based prospective cohort study that recruited more than 500,000 participants aged 40-69 in the United Kingdom from 2006 to 2010. In this study, we used a validated and reliable prediction model to estimate the VAT amount of the participants. On this basis, linear and nonlinear multivariable statistical models were used to explore the association of VAT^ with BMD and fracture risk in different groups of sex and BMI. In observational analyses, the multivariable linear regression model and Cox proportional-hazards model were used to assess VAT^ association with BMD and fracture risk, respectively. Inverse variance weighting was used as the main result of MR analysis. RESULTS: In 190,836 men, an inverted U-shaped association was observed between VAT^ and heel BMD (P for nonlinearity < 0.001), with a turning point of VAT^ = 1.25 kg. Per kg increase in VAT^ was associated with a 0.13 standard deviation (SD) increase in heel BMD (P = 1.5 × 10-16) among men with lower amounts of VAT^, and associated with a 0.05 SD decrease in heel BMD (P = 1.3 × 10-15) among men with higher amounts of VAT^. In 193,592 women, per kg increase in VAT^ was monotonically associated with a 0.16 SD increase in heel BMD (P = 1.2 × 10-136, P for VAT^-sex interaction = 8.4 × 10-51). During a median follow-up of 8.2 years, VAT^ was associated with lower risks of hip fractures in the overall men and women (P for VAT^-sex interaction = 1.9 × 10-4 for total fractures; 1.5 × 10-4 for other fractures). There were significant interactions of VAT^ and BMI on heel BMD and fracture risks in men only (P for VAT^-BMI interaction = 5.9 × 10-31 for heel BMD; 2.7 × 10-4 for total fractures; 5.7 × 10-3 for hip fractures; 6.8 × 10-3 for other fractures). In two-sample MR analyses, evidence of causality was not observed between VAT^ and DXA-derived BMD or fractures. CONCLUSIONS: These novel findings demonstrated gender-dependent associations of VAT^ with BMD and fracture risk, with the association in men being modified by adiposity. Evidence of causality was not observed, suggesting that the observational association of VAT^ with BMD and fracture risk could be the result of confounding.

5.
Biosens Bioelectron ; 172: 112766, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33126177

ABSTRACT

The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected all aspects of human life. Rapid, accurate, sensitive and user friendly detection method is urgently needed to facilitate early intervention and control the spread of SARS-CoV-2. Here, we propose a one-pot visual SARS-CoV-2 detection system named "opvCRISPR" by integrating reverse transcription loop-mediated isothermal amplification (RT-LAMP) and Cas12a cleavage in a single reaction system. We demonstrate that the collateral activity against single-stranded DNA (ssDNA) reporters of activated Cas12a triggered by RT-LAMP amplicon increases detection sensitivity and makes detection results observable with naked eye. The opvCRISPR enables detection at nearly single molecule level in 45 min. We validate this method with 50 SARS-CoV-2 potentially infected clinical samples. The opvCRISPR diagnostic results provide 100% agreement with the Centers for Disease Control and Prevention (CDC)-approved quantitative RT-PCR assay. The opvCRISPR holds great potential for SARS-CoV-2 detection in next-generation point-of-care molecular diagnostics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Cas Systems , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Base Sequence , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/statistics & numerical data , Humans , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/statistics & numerical data , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...