Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chembiochem ; : e202400269, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923255

ABSTRACT

The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.

2.
Br J Pharmacol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721797

ABSTRACT

Neuroinflammation is initiated in response to a variety of endogenous and exogenous sources. As the resident macrophages of the central nervous system, the polarization of microglia into either the M1 pro-inflammatory phenotype or the M2 anti-inflammatory phenotype holds great promise as a therapeutic strategy for neuroinflammation. Natural products, comprising a vital chemical library with distinctive structures and diverse functions, have been extensively employed to modulate microglial polarization for the treatment of neuroinflammation. In this review, we present up-to-date and extensive insights into the therapeutic effects and underlying mechanisms of natural products in the context of neuroinflammation. Furthermore, the review aims to present a new perspective by focusing on the targets of natural compounds, elucidating the molecular mechanisms and guiding the transition from natural-derived lead compounds to potential anti-neuroinflammatory drugs. Additionally, we provide a comprehensive overview of the challenges and limitations associated with the utilization of natural products for neuroinflammation therapy.

3.
Chem Commun (Camb) ; 60(11): 1464-1467, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38223951

ABSTRACT

Mercury sulfide (HgS) exerts extensive biological effects on neuronal function. To investigate the direct target of HgS in neuronal cells, we developed a biotin-tagged HgS probe (bio-HgS) and employed an affinity purification technique to capture its target proteins. Then, we identified S-phase kinase-associated protein 1 (Skp1) as a potential target of HgS. Unexpectedly, we discovered that HgS covalently binds to Skp1 through a "Cys62-HgS-Cys120" mode. Moreover, our findings revealed that HgS inhibits the ubiquitin-protease system through Skp1 to up-regulate SNAP-25 expression, thereby triggering synaptic vesicle exocytosis to regulate locomotion ability in C. elegans. Collectively, our findings may promote a comprehensive interpretation of the pharmacological mechanism of mercury sulfide on neuroprotective function.


Subject(s)
Mercury Compounds , Mercury , Animals , Mercury/metabolism , S-Phase Kinase-Associated Proteins , Caenorhabditis elegans/metabolism , Neuroprotection , Sulfides/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 48(3): 789-796, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872243

ABSTRACT

This study aimed to identify the direct pharmacological targets of Jingfang Granules in treating infectious pneumonia via "target fishing" strategy. Moreover, the molecular mechanism of Jingfang Granules in treating infectious pneumonia was also investigated based on target-related pharmacological signaling pathways. First, the Jingfang Granules extract-bound magnetic nanoparticles were prepared, which were incubated with lipopolysaccharide(LPS)-induced mouse pneumonia tissue lysates. The captured proteins were analyzed by high-resolution mass spectrometry(HRMS), and the target groups with specific binding to the Jingfang Granules extract were screened out. Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was used to identify the target protein-associated signaling pathways. On this basis, the LPS-induced mouse model of infectious pneumonia was established. The possible biological functions of target proteins were verified by hematoxylin-eosin(HE) staining and immunohistochemical assay. A total of 186 Jingfang Granules-specific binding proteins were identified from lung tissues. KEGG pathway enrichment analysis showed that the target protein-associated signaling pathways mainly included Salmonella infection, vascular and pulmonary epithelial adherens junction, ribosomal viral replication, viral endocytosis, and fatty acid degradation. The target functions of Jingfang Granules were related to pulmonary inflammation and immunity, pulmonary energy metabolism, pulmonary microcirculation, and viral infection. Based on the in vivo inflammation model, Jingfang Granules significantly improved the alveolar structure of the LPS-induced mouse model of infectious pneumonia and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6). Meanwhile, Jingfang Gra-nules significantly up-regulated the expressions of key proteins of mitochondrial function COX Ⅳ and ATP, microcirculation-related proteins CD31 and Occludin, and proteins associated with viral infection DDX21 and DDX3. These results suggest that Jingfang Gra-nules can inhibit lung inflammation, improve lung energy metabolism and pulmonary microcirculation, resist virus infection, thus playing a protective role in the lung. This study systematically explains the molecular mechanism of Jingfang Granules in the treatment of respiratory inflammation from the perspective of target-signaling pathway-pharmacological efficacy, thereby providing key information for clinical rational use of Jingfang Granules and expanding potential pharmacological application.


Subject(s)
Anti-Infective Agents , Pneumonia , Animals , Mice , Lipopolysaccharides , Inflammation , Biological Assay , Disease Models, Animal , Interleukin-6
5.
Small ; 19(9): e2205531, 2023 03.
Article in English | MEDLINE | ID: mdl-36549896

ABSTRACT

Understanding the direct interaction of nanostructures per se with biological systems is important for biomedical applications. However, whether nanostructures regulate biological systems by targeting specific cellular proteins remains largely unknown. In the present work, self-assembling nanomicelles are constructed using small-molecule oleanolic acid (OA) as a molecular template. Unexpectedly, without modifications by functional ligands, OA nanomicelles significantly activate cellular proteasome function by directly binding to 20S proteasome subunit alpha 6 (PSMA6). Mechanism study reveals that OA nanomicelles interact with PSMA6 to dynamically modulate its N-terminal domain conformation change, thereby controlling the entry of proteins into 20S proteasome. Subsequently, OA nanomicelles accelerate the degradation of several crucial proteins, thus potently driving cancer cell pyroptosis. For translational medicine, OA nanomicelles exhibit a significant anticancer potential in tumor-bearing mouse models and stimulate immune cell infiltration. Collectively, this proof-of-concept study advances the mechanical understanding of nanostructure-guided biological effects via their inherent capacity to activate proteasome.


Subject(s)
Nanostructures , Neoplasms , Animals , Mice , Proteasome Endopeptidase Complex/metabolism , Pyroptosis , Cytoplasm/metabolism , Micelles , Nanostructures/chemistry
6.
EBioMedicine ; 86: 104353, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36375317

ABSTRACT

BACKGROUND: The E2F family of transcription factors play a crucial role in the development of various cancers. However, E2F members lack targetable binding pockets and are typically considered "undruggable". Unlike canonical small-molecule therapeutics, molecular glues mediate new E3 ligase-protein interactions to induce selective proteasomal degradation, which represents an attractive option to overcome these limitations. METHODS: Human proteome microarray was utilized to identify a natural product-derived molecular glue for targeting E2F2 degradation. Co-IP analysis with stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics was carried out to further explore the E3 ligase for E2F2 degradation. FINDINGS: In this study, we identified a molecular glue bufalin, which significantly promoted E2F2 degradation. Unexpectedly, E2F2 underwent ubiquitination and proteasomal degradation via a previously undisclosed atypical E3 ligase, zinc finger protein 91 (ZFP91). In particular, we observed that bufalin markedly promoted E2F2-ZFP91 complex formation, thereby leading to E2F2 polyubiquitination via K48-linked ubiquitin chains for degradation. E2F2 degradation subsequently caused transcriptional suppression of multiple oncogenes including c-Myc, CCNE1, CCNE2, MCM5 and CDK1, and inhibited hepatocellular carcinoma growth in vitro and in vivo. INTERPRETATION: Collectively, our findings open up a new direction for transcription factors degradation by targeting atypical E3 ligase ZFP91. Meanwhile, the chemical knockdown strategy with molecular glue may promote innovative transcription factor degrader development in cancer therapy. FUNDING: This work was financially supported by the National Key Research and Development Project of China (2022YFC3501601), National Natural Sciences Foundation of China (81973505, 82174008, 82030114), and China Postdoctoral Science Foundation (2019M650396), the Fundamental Research Funds for the Central Universities.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , E2F2 Transcription Factor/drug effects , E2F2 Transcription Factor/metabolism , Proteolysis , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
ACS Nano ; 16(6): 9228-9239, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35622408

ABSTRACT

Carbon quantum dots (CQDs) offer huge potential due to their enzymatic properties as compared to natural enzymes. Thus, discovery of CQDs-based nanozymes with low toxicity from natural resources, especially daily food, implies a promising direction for exploring treatment strategies for human diseases. Here, we report a CQDs-based biocompatible nanozyme prepared from chlorogenic acid (ChA), a major bioactive natural product from coffee. We found that ChA CQDs exhibited obvious GSH oxidase-like activities and subsequently promoted cancer cell ferroptosis by perturbation of GPX4-catalyzed lipid repair systems. In vivo, ChA CQDs dramatically suppressed the tumor growth in HepG2-tumor-bearing mice with negligible side toxicity. Particularly, in hepatoma H22-bearing mice, ChA CQDs recruited massive tumor-infiltrating immune cells including T cells, NK cells, and macrophages, thereby converting "cold" to "hot" tumors for activating systemic antitumor immune responses. Taken together, our study suggests that natural product-derived CQDs from coffee can serve as biologically safe nanozymes for anticancer therapeutics and may aid the development of nanotechnology-based immunotherapeutic.


Subject(s)
Ferroptosis , Neoplasms , Quantum Dots , Humans , Mice , Animals , Carbon , Coffee
8.
Pharmacol Res ; 176: 106046, 2022 02.
Article in English | MEDLINE | ID: mdl-35007708

ABSTRACT

Ischemic stroke remains one of the leading causes of death worldwide, thereby highlighting the urgent necessary to identify new therapeutic targets. Deoxyhypusine hydroxylase (DOHH) is a fundamental enzyme catalyzing a unique posttranslational hypusination modification of eukaryotic translation initiation factor 5A (eIF5A) and is highly involved in the progression of several human diseases, including HIV-1 infection, cancer, malaria, and diabetes. However, the potential therapeutic role of pharmacological regulation of DOHH in ischemic stroke is still poorly understood. Our study first discovered a natural small-molecule brazilin (BZ) with an obvious neuroprotective effect against oxygen-glucose deprivation/reperfusion insult. Then, DOHH was identified as a crucial cellular target of BZ using HuProt™ human proteome microarray. By selectively binding to the Cys232 residue, BZ induced a previously undisclosed allosteric effect to significantly increase DOHH catalytic activity. Furthermore, BZ-mediated DOHH activation amplified mitophagy for mitochondrial function and morphology maintenance via DOHH/eIF5A hypusination signaling pathway, thereby protecting against ischemic neuronal injury in vitro and in vivo. Collectively, our study first identified DOHH as a previously unreported therapeutic target for ischemic stroke, and provided a future drug design direction for DOHH allosteric activators using BZ as a novel molecular template.


Subject(s)
Benzopyrans/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Ischemic Stroke/drug therapy , Mixed Function Oxygenases/metabolism , Neuroprotective Agents/therapeutic use , Animals , Benzopyrans/pharmacology , Brain/drug effects , Brain/metabolism , Brain/pathology , Cells, Cultured , Female , Humans , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice, Inbred ICR , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Pregnancy , Protein Processing, Post-Translational , Rats, Wistar , Zebrafish
9.
Huan Jing Ke Xue ; 42(9): 4222-4233, 2021 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-34414720

ABSTRACT

Because Jiangsu is an important economic province of China, it is necessary to examine the pollution characteristics and assess the ecological risk of environmentally persistent pharmaceutical pollutants (EPPPs) in this region. In this study, surface water samples were obtained from grade 1-4 rivers and lakes (with an area of 50 km2 or more) in Jiangsu Province, and then analyzed to determine the pollution level of EPPPs. In total, 35 EPPPs were detected in the surface water of Jiangsu Province, with total concentrations in the samples ranging from 66.74 to 2189.83 ng·L-1. The 17 EPPPs with a detection rate of more than 25% are discussed in this study. The total concentrations of 35 EPPPs were 72.48-1142.79 ng·L-1, and the mean concentration was 345.20 ng·L-1. The total concentration of EPPPs was higher in the north and south than in the central part of Jiangsu. Yangzhou city had the highest concentration of EPPPs in the whole province, and the main sources of this pollution were domestic sewage, shipping sewage discharge, and drug use in fishery breeding. The total concentration of EPPPs decreased on both sides of the region, with the Beijing-Hangzhou Canal and waste from the Yellow River forming the middle line. An ecological risk assessment of 17 EPPPs showed that single target drugs posed a low risk to water ecology in Jiangsu Province. The combined risk quotient of 17 EPPPs in water of Jiangsu Province was 0.03-0.52, indicating that EPPPs posed a low to moderate risk.


Subject(s)
Environmental Pollutants , Pharmaceutical Preparations , Environmental Monitoring , Risk Assessment , Water
10.
Cell Death Dis ; 12(5): 492, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990545

ABSTRACT

Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Bufanolides/therapeutic use , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Syndecan-4/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Carcinoma, Hepatocellular/pathology , Chick Embryo , Female , Humans , Liver Neoplasms/pathology , Mice , Mice, Nude , Transfection
12.
Signal Transduct Target Ther ; 6(1): 71, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33602894

ABSTRACT

Mitochondrial fusion/fission dynamics plays a fundamental role in neuroprotection; however, there is still a severe lack of therapeutic targets for this biological process. Here, we found that the naturally derived small molecule echinacoside (ECH) significantly promotes mitochondrial fusion progression. ECH selectively binds to the previously uncharacterized casein kinase 2 (CK2) α' subunit (CK2α') as a direct cellular target, and genetic knockdown of CK2α' abolishes ECH-mediated mitochondrial fusion. Mechanistically, ECH allosterically regulates CK2α' conformation to recruit basic transcription factor 3 (BTF3) to form a binary protein complex. Then, the CK2α'/BTF3 complex facilitates ß-catenin nuclear translocation to activate TCF/LEF transcription factors and stimulate transcription of the mitochondrial fusion gene Mfn2. Strikingly, in a mouse middle cerebral artery occlusion (MCAO) model, ECH administration was found to significantly improve cerebral injuries and behavioral deficits by enhancing Mfn2 expression in wild-type but not CK2α'+/- mice. Taken together, our findings reveal, for the first time, that CK2 is essential for promoting mitochondrial fusion in a Wnt/ß-catenin-dependent manner and suggest that pharmacologically targeting CK2 is a promising therapeutic strategy for ischemic stroke.


Subject(s)
Casein Kinase II/genetics , GTP Phosphohydrolases/genetics , Glycosides/pharmacology , Ischemic Stroke/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Casein Kinase II/antagonists & inhibitors , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Infarction, Middle Cerebral Artery , Ischemic Stroke/drug therapy , Ischemic Stroke/pathology , Lymphoid Enhancer-Binding Factor 1/genetics , Mice , Mitochondrial Dynamics/genetics , Multiprotein Complexes/genetics , Neuroprotection/genetics , T Cell Transcription Factor 1/genetics , Transcription, Genetic/drug effects , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...