Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167210, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704001

ABSTRACT

Oxaliplatin has been included as a basal drug in various chemotherapy regimens for colorectal cancer (CRC), a global health concern. However, acquired resistance to oxaliplatin affects the prognosis. This study aimed to determine whether the consumption of a KD increases the sensitivity of CRC cells to oxaliplatin via the inhibition of a classical stem cell marker, Krupple-like factor 5 (KLF5). KLF5 functions as a transcription factor for the leukemia inhibitory factor (LIF) and directly binds to its promoter region. LIF upregulation induces dephosphorylation of metal regulatory transcription factor 1 (MTF1), which is recruited to the promoter area of Ferroportin (FPN1), the only cellular iron exporter. FPN1 upregulation reduces the labile iron pool (LIP) and ferroptosis in CRC cells. KLF5 knockdown inhibits the LIF/MTF1/FPN1 axis and induces iron overload, thereby conferring sensitivity to oxaliplatin to CRC cells. KD mimicked KLF5 silencing and sensitized CRC cells to oxaliplatin via a similar mechanism. Thus, potential correlations were observed among ketogenesis, stemness, and iron homeostasis. This finding can be used to formulate a new strategy for overcoming oxaliplatin resistance in patients with CRC.

2.
Front Genet ; 14: 1066808, 2023.
Article in English | MEDLINE | ID: mdl-37152994

ABSTRACT

Background: Follicular lymphoma (FL), an indolent non-Hodgkin lymphoma (NHL), is generally incurable. Favourable prognosis and durable remission are crucial for FL patients. The genetic mutation spectrum provides novel biomarkers for determining the prognosis of FL patients, but its detection is easily affected by the collection of tumour tissue biopsies. In this study, we aimed to describe the mutational landscape of FL using circulating tumour DNA (ctDNA) samples and to explore the relationship between mutations and prognostic indicators of clinical outcome in patients with newly diagnosed follicular lymphoma and the prognostic value of such mutations. Methods: A total of 28 patients with newly diagnosed FL were included in this study. A targeted NGS-based 59-gene panel was used to assess the ctDNA mutation profiles. Differences in clinical factors between patients carrying mutations and those without mutations were analysed. We also explored the relationship between gene mutation status, mean VAFs (variant allele frequencies) and clinical factors. The Kaplan‒Meier method was applied to analyse the overall survival (OS) and progression-free survival (PFS) of patients carrying mutations and those without mutations. Results: ctDNA mutations were detectable in 21 (75%) patients. The most commonly mutated genes were CREBBP (54%, 15/28), KMT2D (50%, 14/28), STAT6 (29%, 8/28), CARD11 (18%, 5/28), PCLO (14%, 4/28), EP300 (14%, 4/28), BCL2 (11%, 3/28), and TNFAIP3 (11%, 3/28), with a mutation frequency of >10%. Patients with detectable ctDNA mutation tended to present with advanced Ann Arbor stage (III-IV) (p = 0.009), high FLIPI risk (3-5) (p = 0.023) and severe lymph node involvement (No. of involved areas ≥5) (p = 0.02). In addition, we found that the mean VAF was significantly higher in patients with advanced Ann Arbor stage, high-risk FLIPI, elevated lactate dehydrogenase (LDH: 0-248U/L), advanced pathology grade, bone marrow involvement (BMI) and lymph node involvement. Additionally, KMT2D, EP300, and STAT6 mutations were associated with inferior PFS (p < 0.05). Conclusion: We described the ctDNA mutation landscapes in Chinese patients with newly diagnosed FL and found that ctDNA VAF means reflect tumour burden. Moreover, PFS was shorter in patients with KMT2D, EP300 and STAT6 mutations.

3.
Radiat Oncol ; 18(1): 67, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041545

ABSTRACT

BACKGROUND: To establish a novel model using radiomics analysis of pre-treatment and post-treatment magnetic resonance (MR) images for prediction of progression-free survival in the patients with stage II-IVA nasopharyngeal carcinoma (NPC) in South China. METHODS: One hundred and twenty NPC patients who underwent chemoradiotherapy were enrolled (80 in the training cohort and 40 in the validation cohort). Acquiring data and screening features were performed successively. Totally 1133 radiomics features were extracted from the T2-weight images before and after treatment. Least absolute shrinkage and selection operator regression, recursive feature elimination algorithm, random forest, and minimum-redundancy maximum-relevancy (mRMR) method were used for feature selection. Nomogram discrimination and calibration were evaluated. Harrell's concordance index (C-index) and receiver operating characteristic (ROC) analyses were applied to appraise the prognostic performance of nomograms. Survival curves were plotted using Kaplan-Meier method. RESULTS: Integrating independent clinical predictors with pre-treatment and post-treatment radiomics signatures which were calculated in conformity with radiomics features, we established a clinical-and-radiomics nomogram by multivariable Cox regression. Nomogram consisting of 14 pre-treatment and 7 post-treatment selected features has been proved to yield a reliable predictive performance in both training and validation groups. The C-index of clinical-and-radiomics nomogram was 0.953 (all P < 0.05), which was higher than that of clinical (0.861) or radiomics nomograms alone (based on pre-treatment statistics: 0.942; based on post-treatment statistics: 0.944). Moreover, we received Rad-score of pre-treatment named RS1 and post-treatment named RS2 and all were used as independent predictors to divide patients into high-risk and low-risk groups. Kaplan-Meier analysis showed that lower RS1 (less than cutoff value, - 1.488) and RS2 (less than cutoff value, - 0.180) were easier to avoid disease progression (all P < 0.01). It showed clinical benefit with decision curve analysis. CONCLUSIONS: MR-based radiomics measured the burden on primary tumor before treatment and the tumor regression after chemoradiotherapy, and was used to build a model to predict progression-free survival (PFS) in the stage II-IVA NPC patients. It can also help to distinguish high-risk patients from low-risk patients, thus guiding personalized treatment decisions effectively.


Subject(s)
Nasopharyngeal Neoplasms , Nomograms , Humans , Nasopharyngeal Carcinoma , Progression-Free Survival , Nasopharyngeal Neoplasms/pathology , Magnetic Resonance Imaging/methods
4.
Front Oncol ; 12: 1003957, 2022.
Article in English | MEDLINE | ID: mdl-36465410

ABSTRACT

Background: Characterization of gene mutation profiles can provide new treatment options for patients with diffuse large B-cell lymphoma (DLBCL). However, this method is challenged by the limited source of tissue specimens, especially those of DLBCL patients at advanced stages. Therefore, in the current study, we aimed to describe the gene mutation landscape of DLBCL using circulating tumor DNA (ctDNA) samples obtained from patients' blood samples, as well as to explore the relationship between ctDNA mutations and the prognosis and treatment response of patients with newly diagnosed DLBCL. Methods: A total of 169 newly diagnosed Chinese DLBCL patients were included in this study, among which 85 patients were divided into a training set and 84 were assigned into a validation set. The mutation profile of a 59-gene panel was analyzed by targeted next generation sequencing (NGS) of the patients' ctDNA samples. Differences in clinical factors between patients with and without ctDNA mutations were analyzed. In addition, we also explored gene mutation frequencies between GCB and non-GCB subtypes, and the relationship between gene mutation status, clinical factors, mean VAF (variant allele frequencies) and the patients' overall survival (OS) and progression-free survival (PFS). Results: ctDNA mutations were detected in 64 (75.3%) patients of the training set and 67 (79.8%) patients of the validation set. The most commonly mutated genes in both sets were PCLO, PIM1, MYD88, TP53, KMT2D, CD79B, HIST1H1E and LRP1B, with mutation frequencies of >10%. Patients with detectable ctDNA mutations trended to present advanced Ann Arbor stages (III-IV), elevated LDH (lactate dehydrogenase) levels, shorter OS and PFS, and a lower complete response (CR) rate to the R-CHOP regimen compared with DLBCL patients without ctDNA mutations. In addition, mean VAF (≥4.94%) and PCLO mutations were associated with poor OS and PFS. Conclusion: We investigated the ctDNA mutation landscape in Chinese patients with newly diagnosed DLBCL and found that ctDNA could reflect tumor burden and patients with detectable ctDNA mutations trended to have shorter OS and PFS and a lower CR rate.

5.
Materials (Basel) ; 15(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35407922

ABSTRACT

In this study, the industrial, experimental effect of a plasma heating system in the form of graphite electrode in the tundish of double-strand slab caster was evaluated for the first time. The system uses three graphite electrodes, two of which are cathodes and one of which is an anode, to form a conductive loop through molten steel in the tundish. The system is built on an old two-strand slab caster and is installed on the premise that the original ladle tundish equipment remains unchanged. The normal working power of the system is up to 1500 kW, and the heating rate of molten steel in the tundish can reach 1.0 °C/min under conditions of 5 t/min total steel throughput and a tundish capacity of 50 t. After the system was put into operation, the purity of molten steel undergoing heating was investigated. The sample analysis of low carbon steel and ultra-low carbon steel before and after heating showed that the contents of N and O in the steel did not increase, while the size of the oxide inclusions near the heating point increased but showed little change in terms of the overall quantity. This process benefited from the addition of inert gas during the heating process to control the atmosphere in the heating area, which prevents reoxidation. The sample analysis also showed that there is no obvious carbon absorption phenomenon after heating, and the fluctuation in C content is within 0.0001%, which is consistent with the general production results. By using this system, the temperature of molten steel in the steelmaking process can be reduced by 10~15 °C, allowing continuous low superheat casting to be supported, which is helpful for reducing production costs and improving the solidified structure inside the slab. The results of the study show that the plasma heating technology can be applied to the continuous casting of low carbon-nitrogen steel slabs, which shows the benefits of reducing emissions and improving production efficiency.

6.
Dev Comp Immunol ; 127: 104291, 2022 02.
Article in English | MEDLINE | ID: mdl-34710469

ABSTRACT

Spring viremia of carp virus (SVCV) causes severe morbidity and mortality in grass carp (Ctenopharyngodon idellus) in Europe, America and several Asian countries. We found that FKBP5 (FK506-binding protein 5) is an SVCV infection response factor; however, its role in the innate immune mechanism caused by SVCV infection remains unknown. This study cloned gcFKBP5 (grass carp FKBP5) and made its mimic protein structure for function discussion. We found that gcFKBP5 expression in the primary innate immune organs of grass carp, including intestine, liver and spleen, was highly upregulated by SVCV in 24 h, with a similar result in fish cells by poly(I:C) treatment. gcFKBP overexpression aggravates viral damage to cells and increases viral replication. Furthermore, SVCV engages gcFKBP5 interacting with TRAF2 (tumour necrosis factor receptor-associated factor 2) to promote host cell apoptosis for supporting viral replication. The enhanced viral replication seems not to be due to the repression of IFN and other antiviral factors as expected. For the first time, these data show the pivotal role of gcFKBP5 in the innate immune response of grass carp to SVCV infection.


Subject(s)
Carps , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Tacrolimus Binding Proteins , Virus Replication , Animals , Apoptosis , Fish Diseases/metabolism , Fish Diseases/virology , Fish Proteins/metabolism , Rhabdoviridae/physiology , TNF Receptor-Associated Factor 2/genetics , Tacrolimus Binding Proteins/metabolism , Viremia/metabolism , Viremia/virology
7.
Life Sci ; 285: 119996, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34597607

ABSTRACT

AIMS: Dezocine and pentazocine, widely prescribed in China for postoperative pain, were initially considered as mixed agonist/antagonist targeting µ-opioid receptors (MORs) and κ-opioid receptors (KORs). However, dezocine has been revealed to alleviate chronic neuropathic pain through MOR activation and norepinephrine reuptake inhibition (NRI). This study investigated dezocine- and pentazocine-induced antinociception and physical dependence development, compared to the typical MOR-NRI opioid tapentadol. MAIN METHODS: Calcium mobilization assay was conducted to assess the potency of the drugs while hot-plate test was performed to compare the antinociception. Physical dependence development was compared with morphine. KEY FINDINGS: Treatment with dezocine, pentazocine and tapentadol stimulated calcium mobilization in HEK293 cells stably expressed MORs but not KORs, whereas dezocine and pentazocine inhibited KOR activities. Subcutaneously injected dezocine-, tapentadol- and pentazocine-induced antinociception dose-dependently, in hot-plate test. Intrathecally injected MOR antagonist CTAP, norepinephrine depletor 6-OHDA and α2-adrenoceptor (α2-AR) antagonist yohimbine partially antagonized dezocine, pentazocine and tapentadol antinociception. Whereas specific KOR antagonist GNTI did not alter their antinociception, the putative inverse KOR agonist nor-BNI reduced dezocine and pentazocine antinociception. Moreover, combined CTAP and 6-OHDA or yohimbine blocked dezocine and tapentadol antinociception but displayed the same partial inhibition on pentazocine antinociception as CTAP alone. Furthermore, compared to morphine and pentazocine, long-term treatment with dezocine and tapentadol produced much less physical dependence-related withdrawal signs, which were restored by spinal 6-OHDA or yohimbine treatment. SIGNIFICANCE: Our findings illustrated that dezocine and tapentadol, but not pentazocine, exert remarkable antinociception in nociceptive pain with less abuse liability via dual mechanisms of MOR activation and NRI.


Subject(s)
Analgesics, Opioid/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Nociceptive Pain/drug therapy , Pentazocine/pharmacology , Receptors, Opioid, mu/agonists , Tapentadol/pharmacology , Tetrahydronaphthalenes/pharmacology , Adrenergic Uptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/pharmacology , Analgesics, Opioid/chemistry , Analgesics, Opioid/therapeutic use , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Drug Agonism , Drug Antagonism , HEK293 Cells , Humans , Mice , Pentazocine/chemistry , Pentazocine/therapeutic use , Receptors, Adrenergic/metabolism , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Tapentadol/chemistry , Tapentadol/therapeutic use , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/therapeutic use
8.
Neural Plast ; 2021: 9923537, 2021.
Article in English | MEDLINE | ID: mdl-34512747

ABSTRACT

Background: Neuropathic pain is a common chronic pain, which is related to hypersensitivity to stimulus and greatly affects the quality of life of patients. Maladaptive gene changes and molecular signaling underlie the sensitization of nociceptive pathways. We previously found that the activation of microglial glucagon-like peptide 1 receptor (GLP-1R) could potently relieve formalin-, bone cancer-, peripheral nerve injury-, and diabetes-induced pain hypersensitivity. So far, little is known about how the gene profile changes upon the activation of GLP-1R signaling in the pathophysiology of neuropathic pain. Methods: Spinal nerve ligation (SNL) was performed to induce neuropathic pain in rats. Mechanical allodynia was assessed using von Frey filaments. The expression of IL-10, ß-endorphin, and µ-opioid receptor (MOR) was examined by real-time quantitative polymerase chain reaction (qPCR) and whole-cell recording. Measurements of cellular excitability of the substantia gelatinosa (SG) neurons by whole-cell recording were carried out. R packages of differential gene expression analysis based on the negative binomial distribution (DESeq2) and weighted correlation network analysis (WGCNA) were used to analyze differential gene expression and the correlated modules among GLP-1R clusters in neuropathic pain. Results: The GLP-1R agonist, exenatide, has an antiallodynic effect on neuropathic pain, which could be reversed by intrathecal injections of the microglial inhibitor minocycline. Furthermore, differential gene expression analysis (WGCNA) indicated that intrathecal injections of exenatide could reverse the abnormal expression of 591 genes in the spinal dorsal horn induced by nerve injury. WGCNA revealed 58 modules with a close relationship between the microglial GLP-1R pathway and features of nerve injuries, including pain, ligation, paw withdrawal latency (PWL), and anxiety. The brown module was identified as the highest correlated module, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that inflammatory responses were most correlated with PWL. To further unravel the changes of hyperalgesia-related neuronal electrophysiological activity mediated by microglia GLP-1 receptors, whole-cell recording identified that MOR agonism stimulated a robust outward current in the sham groups compared with the spinal nerve ligation (SNL) groups. This inhibitory effect on the SNL group was more sensitive than that of the sham group after bath application of ß-endorphin. Conclusions: Our results further confirmed that the GLP-1R pathway is involved in alleviating pain hypersensitivity mediated by spinal microglia activation, and inflammatory responses were the most correlated pathway associated with PWL changes in response to exenatide treatment. We found that the identification of gene regulation in response to GLP-1R activation is an effective strategy for identifying new therapeutic targets for neuropathic pain. Investigation for the activation of spinal microglial GLP-1R which might ameliorate inflammatory responses through gene expression and structural changes is providing a potential biomarker in pain management.


Subject(s)
Glucagon-Like Peptide-1 Receptor/metabolism , Inflammation Mediators/metabolism , Microglia/metabolism , Neuralgia/metabolism , Signal Transduction/physiology , Animals , Exenatide/administration & dosage , Gene Expression Regulation/physiology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/genetics , Injections, Spinal , Male , Microglia/drug effects , Neuralgia/drug therapy , Neuralgia/genetics , Rats , Rats, Wistar , Signal Transduction/drug effects , Spinal Nerves/drug effects , Spinal Nerves/injuries , Spinal Nerves/metabolism
9.
CNS Neurosci Ther ; 27(10): 1157-1172, 2021 10.
Article in English | MEDLINE | ID: mdl-34111331

ABSTRACT

AIM: This study aimed to investigate the regulation of pain hypersensitivity induced by the spinal synaptic transmission mechanisms underlying interleukin (IL)-10 and glucagon-like peptide 1 receptor (GLP-1R) agonist exenatide-induced pain anti-hypersensitivity in neuropathic rats through spinal nerve ligations. METHODS: Neuropathic pain model was established by spinal nerve ligation of L5/L6 and verified by electrophysiological recording and immunofluorescence staining. Microglial expression of ß-endorphin through autocrine IL-10- and exenatide-induced inhibition of glutamatergic transmission were performed by behavioral tests coupled with whole-cell recording of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) through application of endogenous and exogenous IL-10 and ß-endorphin. RESULTS: Intrathecal injections of IL-10, exenatide, and the µ-opioid receptor (MOR) agonists ß-endorphin and DAMGO inhibited thermal hyperalgesia and mechanical allodynia in neuropathic rats. Whole-cell recordings of bath application of exenatide, IL-10, and ß-endorphin showed similarly suppressed enhanced frequency and amplitude of the mEPSCs in the spinal dorsal horn neurons of laminae II, but did not reduce the frequency and amplitude of mIPSCs in neuropathic rats. The inhibitory effects of IL-10 and exenatide on pain hypersensitive behaviors and spinal synaptic plasticity were totally blocked by pretreatment of IL-10 antibody, ß-endorphin antiserum, and MOR antagonist CTAP. In addition, the microglial metabolic inhibitor minocycline blocked the inhibitory effects of IL-10 and exenatide but not ß-endorphin on spinal synaptic plasticity. CONCLUSION: This suggests that spinal microglial expression of ß-endorphin mediates IL-10- and exenatide-induced inhibition of glutamatergic transmission and pain hypersensitivity via presynaptic and postsynaptic MORs in spinal dorsal horn.


Subject(s)
Exenatide/pharmacology , Interleukin-10 , Microglia , Neuralgia/physiopathology , Neuronal Plasticity/drug effects , Spinal Nerves/physiopathology , beta-Endorphin/physiology , Analgesics, Opioid/pharmacology , Animals , Behavior, Animal/drug effects , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Excitatory Postsynaptic Potentials , Glutamic Acid , Injections, Spinal , Interleukin-10/metabolism , Interleukin-10/pharmacology , Neuralgia/psychology , Patch-Clamp Techniques , Rats , Receptors, Opioid, mu/agonists , Signal Transduction , Synaptic Transmission , beta-Endorphin/pharmacology
10.
Front Pharmacol ; 12: 620926, 2021.
Article in English | MEDLINE | ID: mdl-33716748

ABSTRACT

Bulleyaconitine A (BAA), a C19-diterpenoid alkaloid, has been prescribed as a nonnarcotic analgesic to treat chronic pain over four decades in China. The present study investigated its inhibition in morphine-induced withdrawal symptoms, conditioned place preference (CPP) and locomotor sensitization, and then explored the underlying mechanisms of actions. Multiple daily injections of morphine but not BAA up to 300 µg/kg/day into mice evoked naloxone-induced withdrawal symptoms (i.e., shakes, jumps, genital licks, fecal excretion and body weight loss), CPP expression, and locomotor sensitization. Single subcutaneous BAA injection (30-300 µg/kg) dose-dependently and completely attenuated morphine-induced withdrawal symptoms, with ED50 values of 74.4 and 105.8 µg/kg in shakes and body weight loss, respectively. Subcutaneous BAA (300 µg/kg) also totally alleviated morphine-induced CPP acquisition and expression and locomotor sensitization. Furthermore, subcutaneous BAA injection also specifically stimulated dynorphin A expression in microglia but not astrocytes or neurons in nucleus accumbens (NAc) and hippocampal, measured for gene and protein expression and double immunofluorescence staining. In addition, subcutaneous BAA-inhibited morphine-induced withdrawal symptoms and CPP expression were totally blocked by the microglial metabolic inhibitor minocycline, dynorphin A antiserum, or specific KOR antagonist GNTI, given intracerebroventricularly. These results, for the first time, illustrate that BAA attenuates morphine-induced withdrawal symptoms, CPP expression, and locomotor sensitization by stimulation of microglial dynorphin A expression in the brain, suggesting that BAA may be a potential candidate for treatment of opioids-induced physical dependence and addiction.

11.
Radiat Oncol ; 16(1): 17, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33472660

ABSTRACT

BACKGROUND: Patients with locally advanced rectal cancer generally have different response rates to preoperative neoadjuvant chemo-radiotherapy. This study investigated the value of the apparent diffusion coefficient (ADC) as a predictor to forecast the response to neoadjuvant chemo-radiotherapy in patients with locally advanced rectal cancer. METHODS: Ninety-one locally advanced rectal cancer patients who underwent neoadjuvant chemo-radiotherapy between 2015 and 2018 were enrolled. Diffusion-weighted magnetic resonance imaging was performed before treatment and within 4 weeks after the completion of neoadjuvant chemo-radiotherapy. Mean ADC values of regions of interest were evaluated by two radiologists. The tumor response was evaluated according to RESCIST 1.1. The cut-off value for the mean ADC and increasing percentage (ΔADC%) after neoadjuvant chemo-radiotherapy was calculated using the receiver operating characteristic curve. The response rate of pre-ADC and ΔADC% above/below the cut-off values was determined using the chi-square test, respectively. Primary tumor progression-free survival (PFS) was analyzed using the Kaplan-Meier method, based on the pre-ADC and ΔADC% cut-off values. RESULTS: The cut-off value of mean pre-ADC and ΔADC% was 0.94 × 10-3 mm2/s (80.36% sensitivity, 74.29% specificity) and 26.0% (73.21% sensitivity, 77.14% specificity), respectively. Lower mean pre-ADC values were related to a better response rate (83.3% vs 29.7%, P < 0.001) and PFS (26.12 vs 17.70 months, P = 0.004). ΔADC% above the cut-off value was also related to a better response rate (83.7% vs 35.7%, P < 0.001) and PFS (26.93 vs 15.65 months, P = 0.034). CONCLUSIONS: The mean ADC pre-treatment value and ΔADC% were potential predictors for the tumor response in locally advanced rectal cancer patients treated with neoadjuvant chemo-radiotherapy.


Subject(s)
Chemoradiotherapy , Diffusion Magnetic Resonance Imaging/methods , Rectal Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Diffusion , Female , Humans , Male , Middle Aged , Neoadjuvant Therapy , Rectal Neoplasms/mortality , Rectal Neoplasms/pathology , Tumor Burden
12.
Eur Radiol ; 31(8): 5565-5575, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33452628

ABSTRACT

OBJECTIVES: This study aimed to access the performance of apparent diffusion coefficient (ADC) as a predictor for treatment response to whole-brain radiotherapy (WBRT) in patients with brain metastases (BMs) from non-small-cell lung cancer (NSCLC). METHODS: A retrospective analysis was conducted of 102 NSCLC patients with BMs who underwent WBRT between 2012 and 2016. Diffusion-weighted MRI were performed pre-WBRT and within 12 weeks after WBRT started. Mean single-plane ADC value of ROIs was evaluated by two radiologists blinded to results of each other. The treatment response rate, intracranial progression-free survival (PFS), and overall survival (OS) were analyzed based on the ADC value and ΔADC respectively. At last, we used COX and logistic regression to do the multivariate analysis. RESULTS: There was good inter-observer agreement of mean ADC value pre-WBRT, post-WBRT, and ΔADC between the 2 radiologists (Pearson correlation 0.915 [pre-WBRT], 0.950 [post-WBRT], 0.937 [ΔADC], p < 0.001, for each one). High mean ADC value were related with better response rate (72.2% vs 37.5%, p = 0.001) and iPFS (7.6 vs 6.4 months, p = 0.031). High ΔADC were related with better response rate (73.6% vs 36.7%, p < 0.001). Multivariate analysis shows that histopathology, BMs number, high ADC value pre-WBRT, and high ΔADC post-WBRT were related to better treatment response of WBRT, and KPS, BMs number, and low ADC value pre-WBRT increased the risk of developing intracranial relapse. CONCLUSIONS: The mean single-plane ADC value pre-WBRT and ΔADC post-WBRT were potential predictor for intracranial tumor response to WBRT in NSCLC patients with brain metastases. KEY POINTS: • ADC value is a potential predictor of intracranial treatment response to WBRT in NSCLC patients with brain metastases. • Higher mean ADC value pre-WBRT and ΔADC post-WBRT of brain metastases were related to better intracranial tumor response. • Prediction of response before WBRT using ADC value can help oncologists to make better therapy plans and avoid missing opportunities for rescue therapy.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Brain , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cranial Irradiation , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Neoplasm Recurrence, Local , Retrospective Studies , Treatment Outcome
13.
Cell Death Dis ; 11(11): 951, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154352

ABSTRACT

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related human mortality with a clear need for new therapeutic intervention. GDC-0349 is a potent and selective ATP-competitive mTOR inhibitor. In A549 cells and primary human NSCLC cells, GDC-0349 inhibited cell growth, proliferation, cell cycle progression, migration and invasion, while inducing significant apoptosis activation. Although GDC-0349 blocked Akt-mTORC1/2 activation in NSCLC cells, it also exerted cytotoxicity in Akt1-knockout A549 cells. Furthermore, restoring Akt-mTOR activation by a constitutively-active Akt1 only partially attenuated GDC-0349-induced A549 cell apoptosis, indicating the existence of Akt-mTOR-independent mechanisms. In NSCLC cells GDC-0349 induced sphingosine kinase 1 (SphK1) inhibition, ceramide accumulation, JNK activation and oxidative injury. Conversely, N-acetylcysteine, the JNK inhibitor and sphingosine 1-phosphate alleviated GDC-0349-induced NSCLC cell apoptosis. In vivo, daily oral administration of GDC-0349 potently inhibited NSCLC xenograft growth in mice. Akt-mTOR in-activation, SphK1 inhibition, JNK activation and oxidative stress were detected in NSCLC xenograft tissues with GDC-0349 administration. In summary, GDC-0349 inhibits NSCLC cell growth via Akt-mTOR-dependent and Akt-mTOR-independent mechanisms.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle , Cell Movement , Cell Proliferation , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, SCID , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Cell Oncol (Dordr) ; 43(3): 477-488, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32297303

ABSTRACT

PURPOSE: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality world-wide. Recently, a number of circular RNAs (circRNAs) has been found to be differentially expressed in human NSCLCs, correlating with clinico-pathological features. As yet, the expression and potential role of circRNA BIRC6 (circBIRC6) in NSCLC have not been studied. METHODS: Expression of circBIRC6 and its target microRNA-145 (miR-145) in human NSCLC cells and tissues was assessed using qRT-PCR. In vitro genetic strategies were used to exogenously alter circBIRC6 and miR-145 expression. Their impact on in vitro and in vivo NSCLC cell behavior was studied. RESULTS: We found that circBIRC6 was upregulated in primary human NSCLC tissues and NSCLC cells, whereas its potential target, miR-145, was downregulated. In A549 NSCLC cells and primary human NSCLC cells, shRNA-induced silencing of circBIRC6 potently inhibited their growth, proliferation, migration and invasion. Conversely, we found that exogenous overexpression of circBIRC6 promoted these characteristics. Using RNA immunoprecipitation (RIP) in A549 cells, we found that Argonaute 2 (Ago2) immunoprecipitated together with both circBIRC6 and miR-145. Additional studies revealed that the miR-145 level increased after circBIRC6 silencing in A549 cells, but decreased after circBIRC6 overexpression. Of note, we found that the circBIRC6 silencing-induced anti-A549 activity could be attenuated by a miR-145 inhibitor. Lastly, we found that circBIRC6 silencing inhibited the growth of NSCLC xenografts in severe combined immunodeficient mice. CONCLUSIONS: From our data we conclude that circBIRC6 overexpression promotes NSCLC cell progression, possibly by sponging miR-145.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/metabolism , RNA, Circular/metabolism , A549 Cells , Animals , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Male , Mice, SCID , MicroRNAs/genetics , Middle Aged , RNA, Circular/genetics , Up-Regulation/genetics , Xenograft Model Antitumor Assays
15.
Onco Targets Ther ; 13: 2701-2710, 2020.
Article in English | MEDLINE | ID: mdl-32280244

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) can promote hepatocellular carcinoma (HCC) initiation and progression. In this report, we examined the role of lncRNA LINC02476 in HCC. METHODS: The expression levels of different lncRNAs in HCC were explored using the TCGA database and lncRNA LINC02476 was selected for further study. The expression of LINC02476 in HCC tissues was determined by real-time PCR. The clinicopathological characteristics of HCC patients were analyzed relative to the expression of LINC02476. The expression of LINC02476 was downregulated in HCC cells using a lentiviral vector and different assays were performed to study cell growth, proliferation, invasion, apoptosis and the cell cycle. MiR-497 was selected as a miRNA that could interact with LINC02476 which was further tested by RNA immunoprecipitation. HMGA2 was selected as a possible target of miR-497, and their interaction was examined by a luciferase reporter assay. RESULTS: LINC02476 expression was elevated in HCC cell lines and HCC tissues. When LINC02476 was downregulated, the growth and the invasion of HCC cells decreased in vitro and in vivo. LINC02476 negatively regulated the expression of miR-497 by acting as a ceRNA. HMGA2 was directly targeted and inhibited by miR-497. CONCLUSION: The results indicate that LINC02476 functions through the miR-497/HMGA2 axis and that it has a role in the growth and metastasis of HCC cells. Therefore, LINC02476 could be an interesting new molecular target in HCC therapies.

16.
Xenobiotica ; 50(10): 1139-1148, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32238093

ABSTRACT

Elucidating the mechanisms for circadian expression of drug-metabolizing enzymes is essential for a better understanding of dosing time-dependent drug metabolism and pharmacokinetics. CYP2B6 (Cyp2b10 in mice) is an important enzyme responsible for metabolism and detoxification of approximately 10% of drugs. Here, we aimed to investigate a potential role of nuclear receptor co-repressor RIP140 in circadian regulation of Cyp2b10 in mice.We first uncovered diurnal rhythmicity in hepatic RIP140 mRNA and protein with peak values at ZT10 (ZT, zeitgeber time). RIP140 ablation up-regulated Cyp2b10 expression and blunted its rhythm in mice and in AML-12 cells. Consistent with a negative regulatory effect, overexpression of RIP140 inhibited Cyp2b10 promoter activity and reduced cellular Cyp2b10 expression.Furthermore, RIP140 suppressed Car- and Pxr-mediated transactivation of Cyp2b10, and the suppressive effects were attenuated when the RIP140 gene was silenced. Chromatin immunoprecipitation assays revealed that recruitment of RIP140 protein to the Cyp2b10 promoter was circadian time-dependent in wild-type mice. More extensive recruitment was observed at ZT10 than at ZT2 consistent with the rhythmic pattern of RIP140 protein. However, the time-dependency of RIP140 recruitment was lost in RIP140-/- mice.Additionally, we identified a D-box and a RORE cis-element in RIP140 promoter. D-box- and RORE-acting clock components such as Dbp, E4bp4, Rev-erbα/ß and Rorα transcriptionally regulated RIP140, potentially accounting for its rhythmic expression.In conclusion, RIP140 regulates diurnal expression of Cyp2b10 in mouse liver through periodical repression of Car- and Pxr-mediated transactivation. This co-regulator-driven mechanism represents a novel source of diurnal rhythmicity in drug-metabolizing enzymes.


Subject(s)
Cytochrome P450 Family 2/metabolism , Inactivation, Metabolic/physiology , Nuclear Receptor Co-Repressor 1/genetics , Animals , Circadian Rhythm , Cytochrome P-450 Enzyme System , Liver/metabolism , Mice , Transcriptional Activation
17.
Eur J Pharm Sci ; 149: 105322, 2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32289662

ABSTRACT

Opioid analgesics and the α2-adrenergic receptor (α2AR) agonists are found to produce synergistic antinociception when administered in combination. In this study interactions between butorphanol and dexmedetomidine were investigated in the thermal pain and autonomous locomotor activity. Butorphanol and dexmedetomidine were administered subcutaneously alone and in combination in a fixed-dose ratio (3:1) to assess the antinociceptive and sedative responses. Butorphanol produced antinociception in the hot-plate test via three major opioid receptor subtypes, i.e. MORs, KORs and DORs, while in the tail-immersion test the antinociception was produced by MORs and KORs, whereas dexmedetomidine exhibited antinociception by α2ARs in both tests. They exhibited dose- and time-dependent antinociception and inhibition of locomotor activity when administered alone, while their combination displayed enhanced therapeutic effects. Isobolographic analysis revealed that combined butorphanol and dexmedetomidine produced synergistic interactions in the hot-plate, tail-immersion and locomotor activity tests. Furthermore, the analgesic synergy was also approved to be modulated by MORs, KORs, DORs and α2ARs. Hence we concluded from this study that combined butorphanol and dexmedetomidine produced synergistic antinociception that may be helpful in facilitating clinical management of acute nociceptive pain.

18.
Drug Metab Dispos ; 48(5): 395-406, 2020 05.
Article in English | MEDLINE | ID: mdl-32114506

ABSTRACT

Dependence of drug metabolism on dosing time has long been recognized. However, only recently are the underlying mechanisms for circadian drug metabolism being clarified. Diurnal rhythmicity in expression of drug-metabolizing enzymes is believed to be a key factor determining circadian metabolism. Supporting the notion that biological rhythms are generated and maintained by the circadian clock, a number of diurnal enzymes are under the control of the circadian clock. In general, circadian clock genes generate and regulate diurnal rhythmicity in drug-metabolizing enzymes via transcriptional actions on one or two of three cis-elements (i.e., E-box, D-box, and Rev-erb response element or RAR-related orphan receptor response element). Additionally, cycling or clock-controlled nuclear receptors such as hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor γ are contributors to diurnal enzyme expression. These newly discovered mechanisms for each of the rhythmic enzymes are reviewed in this article. We also discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics. Our discussion is also extended to two diurnal transporters (P-glycoprotein and multidrug resistance-associated protein 2) that have an important role in drug absorption. Although the experimental evidence is lacking in metabolism-based chronoefficacy, circadian genes (e.g., Rev-erbα) as drug targets are shown to account for diurnal variability in drug efficacy. SIGNIFICANCE STATEMENT: Significant progress has been made in understanding the molecular mechanisms for generation of diurnal rhythmicity in drug-metabolizing enzymes. In this article, we review the newly discovered mechanisms for each of the rhythmic enzymes and discuss how the rhythms of enzymes are translated to circadian pharmacokinetics and drug chronotoxicity, which has direct implications for chronotherapeutics.


Subject(s)
Circadian Clocks/genetics , Drug Chronotherapy , Metabolic Clearance Rate/genetics , Multidrug Resistance-Associated Proteins/genetics , Animals , Humans , Models, Animal , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Response Elements , Transcriptional Activation , Treatment Outcome
19.
Biochem Biophys Res Commun ; 525(4): 1087-1094, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32184015

ABSTRACT

Lemairamin (also known as wgx-50), is isolated from the pericarps of the Zanthoxylum plants. As an agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), it can reduce neuroinflammation in Alzheimer's disease. This study evaluated its antinociceptive effects in pain hypersensitivity and explored the underlying mechanisms. The data showed that subcutaneous lemairamin injection dose-dependently inhibited formalin-induced tonic pain but not acute nociception in mice and rats, while intrathecal lemairamin injection also dose-dependently produced mechanical antiallodynia in the ipsilateral hindpaws of neuropathic and bone cancer pain rats without affecting mechanical thresholds in the contralateral hindpaws. Multiple bi-daily lemairamin injections for 7 days did not induce mechanical antiallodynic tolerance in neuropathic rats. Moreover, the antinociceptive effects of lemairamin in formalin-induced tonic pain and mechanical antiallodynia in neuropathic pain were suppressed by the α7nAChR antagonist methyllycaconitine. In an α7nAChR antagonist-reversible manner, intrathecal lemairamin also stimulated spinal expression of IL-10 and ß-endorphin, while lemairamin treatment induced IL-10 and ß-endorphin expression in primary spinal microglial cells. In addition, intrathecal injection of a microglial activation inhibitor minocycline, anti-IL-10 antibody, anti-ß-endorphin antiserum or µ-opioid receptor-preferred antagonist naloxone was all able to block lemairamin-induced mechanical antiallodynia in neuropathic pain. These data demonstrated that lemairamin could produce antinociception in pain hypersensitivity through the spinal IL-10/ß-endorphin pathway following α7nAChR activation.


Subject(s)
Acrylamides/pharmacology , Analgesics/pharmacology , Cancer Pain/drug therapy , Hyperalgesia/drug therapy , Microglia/drug effects , Neuralgia/drug therapy , alpha7 Nicotinic Acetylcholine Receptor/agonists , Aconitine/analogs & derivatives , Aconitine/pharmacology , Acrylamides/administration & dosage , Acrylamides/therapeutic use , Analgesics/administration & dosage , Analgesics/therapeutic use , Animals , Female , Formaldehyde , Hyperalgesia/genetics , Hyperalgesia/metabolism , Injections, Spinal , Interleukin-10/genetics , Interleukin-10/metabolism , Male , Mice , Microglia/metabolism , Minocycline/administration & dosage , Naloxone/administration & dosage , Rats , Rats, Wistar , Spinal Cord/metabolism , Zanthoxylum/chemistry , Zanthoxylum/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , beta-Endorphin/genetics , beta-Endorphin/metabolism
20.
Eur J Pharmacol ; 876: 173062, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32173379

ABSTRACT

Dezocine is an opioid analgesic widely used in China, occupying over 45% of the domestic market of opioid analgesics. We have recently demonstrated that dezocine produced mechanical antiallodynia and thermal antihyperalgesia through spinal µ-opioid receptor activation and norepinephrine reuptake inhibition in neuropathic pain. This study further explored the dual µ-opioid receptor and norepinephrine reuptake mechanisms underlying dezocine-induced mechanical antiallodynia in bone cancer pain, compared with tapentadol, the first recognized analgesic in this class. Dezocine and tapentadol, given subcutaneously, exerted profound mechanical antiallodynia in bone cancer pain rats in a dose-dependent manner, yielding similar maximal effects but different potencies: ED50s of 0.6 mg/kg for dezocine and 7.5 mg/kg for tapentadol, respectively. Furthermore, their mechanical antiallodynia was partially blocked by intrathecal injection of the specific µ-opioid receptor antagonist CTAP, but not κ-opioid receptor antagonists GNTI and nor-BNI or δ-opioid receptor antagonist naltrindole. Intrathecal administrations of the specific norepinephrine depletor 6-OHDA (but not the serotonin depletor PCPA) for three consecutive days and single injection of the α-adrenoceptor antagonist phentolamine/α2-adrenoceptor antagonist yohimbine partially blocked dezocine- and tapentadol-induced mechanical antiallodynia. Strikingly, the combination of CTAP and yohimbine nearly completely blocked dezocine- and tapentadol-induced mechanical antiallodynia. Our results illustrate that both dezocine and tapentadol exert mechanical antiallodynia in bone cancer pain through dual mechanisms of µ-opioid receptor activation and norepinephrine reuptake inhibition, and suggest that the µ-opioid receptor and norepinephrine reuptake dual-targeting opioids are effective analgesics in cancer pain.


Subject(s)
Analgesics, Opioid/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cancer Pain/drug therapy , Hyperalgesia/prevention & control , Receptors, Opioid, mu/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Tapentadol/pharmacology , Tetrahydronaphthalenes/pharmacology , Animals , Behavior, Animal/drug effects , Bone Neoplasms , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Injections, Spinal , Rats , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...